Ukr.Biochem.J. 2020; Volume 92, Issue 2, Mar-Apr, pp. 60-70

doi: https://doi.org/10.15407/ubj92.02.060

Protective action of N-stearoylethanolamine on blood coagulation and arterial changes in spontaneously hypertensive rats fed cholesterol-rich diet

O. S. Tkachenko1, Ie. A. Hudz1*, H. V. Kosiakova1,
P. P. Klymenko2, Y. M. Stohnii1, V. A. Didkivskyi1,
T. M. Chernyshenko1, V. O. Chernyshenko1, T. M. Platonova1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2SI “D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine”, Kyiv;
*e-mail: goudziegor@gmail.com

Received: 24 December 2019; Accepted: 27 March 2020

In this work we aimed to test the atherosclerotic changes in the aortic wall and pro-coagulant response of the blood coagulation system of spontaneously hypertensive rats (SHR) fed cholesterol-rich diet (CRD) and to study the effect of the anti-inflammatory agent N-stearoylethanolamine (NSE) on the development of atherosclerosis in this model. Female rats (n = 30) with genetically determined hypertension proven by direct measurement of blood pressure were fed CRD (5% cholesterol) for 2 months. Control group of SHR (n = 10) received standard pellet diet, 10 were fed CRD and 10 received CRD with daily per os application of NSE at a dose of 50 mg/kg of body weight. Histological analysis detected swelling and detachment of endothelial cells, huge edema of the subendothelial layer and a disruption of the middle shell integrity. CRD rats had higher fibrinogen concentration, increased rate of platelet aggregation and decreased level of anticoagulant PC. Platelet aggregation speed increased in CRD-fed rats (52.5±4.1%/min) was slightly normalized under the action of NSE (40±8.3 vs 35±9%/min in controls). Fibrinogen concentration was slightly increased in CRD-fed rats (2.75±0.7 vs 1.9±0.5 mg/ml in controls). However, the level of anticoagulant PC that was decreased in CRD-fed rats (65±16 vs 100±11% in controls) was normalized under the action of NSE (92±17%). NSE also influenced the aorta architecture, however normalizing the thickness of the aorticwall did not change the cholesterol-induced inclusions within aorta media. NSE anti-inflammatory action changes the atherogenic processes in CRD-fed rats mainly protecting PC from consumption during the inflammatory process and reducing edema of the aorta. However hematological parameters (including clotting time in the APTT test and fibrinogen concentration) changed independently on NSE application. Anti-aggregatory action of NSE on platelets can be a result of direct action on platelets or the consequence of its anti-inflammatory action. During atherogenesis induced by CRD in the model, NSE demonstrated valuable anti-inflammatory action protecting the organism during atherogenesis, however it cannot be assumed as an antithrombotic or antiatherogenic agent because it is unable to influence hemostasis directly.

Keywords: , , ,


References:

  1. Libby P, Buring JE, Badimon L, Hansson GK,Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Rev Dis Primers. 2019; 5(1):56. PubMed, CrossRef
  2. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int J Prev Med. 2014; 5(8): 927-946. PubMed, PubMedCentral
  3. von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metab. 2017;25(2):248-261. PubMed, PubMedCentral, CrossRef
  4. Dornas WC, de Oliveira TT, Augusto LEF, Nagem TJ. Experimental atherosclerosis in rabbits. Arq Bras Cardiol. 2010;95(2):272-278. PubMed, CrossRef
  5. Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY. Animal models of atherosclerosis. Eur J Pharmacol. 2017;816:3-13. PubMed, CrossRef
  6. Yamori Y. Rat Models for Atherosclerosis. In: Goldbourt U., de Faire U., Berg K. (eds) Genetic factors in coronary heart disease. Developm Cardiovasc Med. 1994; 156: 179-187. CrossRef
  7. Pisulewski PM, Franczyk M, Kostogrys RB, Lorkowska B, Bartuś B, Chłopicki S. Spontaneously hypertensive rats are resistant to hypercholesterolaemia-induced atherosclerosis. J Anim Feed Sci. 2006;15(1):103-114. CrossRef
  8. Cappelli-Bigazzi M, Rubattu S, Battaglia C, Russo R, Enea I, Ambrosio G, Chiariello M, Volpe M. Effects of high-cholesterol and atherogenic diets on vascular relaxation in spontaneously hypertensive rats. Am J Physiol. 1997;273(2 Pt 2):H647-H654. PubMed, CrossRef
  9. Tumanovska LV, Swanson RJ, Serebrovska ZO, Portnichenko GV, Goncharov SV, Kysilov BA, Moibenko OO, Dosenko VE. Cholesterol enriched diet suppresses ATF6 and PERK and upregulates the IRE1 pathways of the unfolded protein response in spontaneously hypertensive rats: Relevance to pathophysiology of atherosclerosis in the setting of hypertension. Pathophysiology. 2019;26(3-4):219-226. PubMed, CrossRef
  10. Pashevin DO, Honcharov SV, Tumanovs’ka LV, Dosenko VIe, Moibenko OO. The changes in the activity of tripeptidyl peptidase II in experimental atherosclerosis and hypertension. Fiziol Zh. 2014;60(3):27-31. (In Ukrainian). PubMed, CrossRef
  11. Maeda M, Tsuboi T, Hayashi T. An Inhibitor of Activated Blood Coagulation Factor X Shows Anti-Endothelial Senescence and Anti-Atherosclerotic Effects. J Vasc Res. 2019;56(4):181-190. PubMed, CrossRef
  12. Posthuma JJ, Posma, JJN, van Oerle R, Leenders P, van Gorp RH, Jaminon AMG, Mackman N, Heitmeier S, Schurgers LJ, ten Cate H, Spronk HMH.  Targeting Coagulation Factor Xa Promotes Regression of Advanced Atherosclerosis in Apolipoprotein-E Deficient Mice. Sci Rep. 2019;9(1):3909. PubMed, PubMedCentral, CrossRef
  13. Goridko TM, Gula NM, Margitich VM, Govseyeva NM, Klimashevsky VM, Shagidulin MYu. Influence of N-palmitoylethanolamine on phospholipid and fatty acid content in the rat liver under ischemia. Ukr Biokhim Zhurn. 2001;73(1):82-87. (In Ukrainian). PubMed
  14. Gula NM, Margitich VM, Klimashevsky VM, Goridko TM, Artamonov MV, Zhukov OD. Neuroprotective effect of N-acylethanolamines under chronic morphine dependenc. II. Effect on rat brain fatty acid composition. Ukr Biokhim Zhurn. 2005;77(2):112–117. (In Ukrainian). PubMed
  15. Goridko TM, Gula NM, Stogniy NA, Meged OF, Klimashevsky VM, Shovkun SA, Kindruk NL, Berdyshev AH. Influence of N-stearoylethanolamine on the lipid peroxidation process and lipid composition of the rat liver under acute morphine intoxication. Ukr Biokhim Zhurn. 2007;79(5):175-185. (In Ukrainian). PubMed
  16. Gornitskaia OV, Platonova TN. Isolation and properties of the protein C activator from Agkistrodon halys halys venom. Biomed Khim. 2003; 49(5): 470-478. (In Russian). PubMed
  17. Cattaneo M, Cerletti C, Harrison P, Hayward CPM, Kenny D, Nugent D, Nurden P, Rao AK, Schmaier AH, Watson SP, Lussana F, Pugliano MT, Michelson AD. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost. 2013; 11(6):1183-1189. PubMed, CrossRef
  18. Tulis DA. Histological and morphometric analyses for rat carotid artery balloon injury model. Methods Mol Med. 2007; 139: 31-66. PubMed, PubMedCentral, CrossRef
  19. Dzau VJ. Atherosclerosis and hypertension: mechanisms and interrelationships. J Cardiovasc Pharmacol. 1990;15(Suppl 5):S59-S64. PubMed, CrossRef
  20. Loeffen R, Spronk HMH, ten Cate H. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost. 2012;10(7):1207-1216. PubMed, CrossRef
  21. Noyd RK, Krueger JA, Hill KM. Biology: Organisms and Adaptations. Cengage Learning. 2016. 731 p.
  22. Hao W, Friedman A. The LDL-HDL Profile Determines the Risk of Atherosclerosis: A Mathematical Model. PLoS ONE. 2014;9(3):e90497. PubMed, PubMedCentral, CrossRef
  23. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79(1):14-23. PubMed, CrossRef
  24. Lippi G, Salvagno GL, Ippolito L, Franchini M, Favaloro EJ. Shortened activated partial thromboplastin time: causes and management. Blood Coagul Fibrinolysis. 2010;21(5):459-463. PubMed, CrossRef
  25. Tripodi A, Chantarangkul V, Martinelli I, Bucciarelli P, Mannucci PM. A shortened activated partial thromboplastin time is associated with the risk of venous thromboembolism. Blood. 2004;104(12):3631-3634. PubMed, CrossRef
  26. Coronado S, Zakzuk J, Regino R, Ahumada V, Benedetti I, Angelina A, Palomares O, Caraballo L. Ascaris lumbricoides Cystatin Prevents Development of Allergic Airway Inflammation in a Mouse Model. Front Immunol. 2019;10:2280. PubMed, PubMedCentral, CrossRef
  27. Stoppa-Vaucher S, Dirlewanger MA, Meier CA, de Moerloose P, Reber G, Roux-Lombard P, Combescure C, Saudan S, Schwitzgebel VM. Inflammatory and prothrombotic states in obese children of European descent. Obesity (Silver Spring). 2012;20(8):1662-1668. PubMed, CrossRef
  28. Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol. 2015; 6: 98. PubMed, PubMedCentral, CrossRef
  29. Olie RH, van der Meijden PEJ, Ten Cate H. The coagulation system in atherothrombosis: Implications for new therapeutic strategies. Res Pract Thromb Haemost. 2018; 2(2): 188-198. PubMed, PubMedCentral, CrossRef
  30. Dziuba OS, Chernyshenko VO, Hudz IeA, Kasatkina LO, Chernyshenko TM, Klymenko PP, Kosiakova HV, Platonova TM, Hula NM, Lugovskoy EV. Blood coagulation and aortic wall integrity in rats with obesity-induced insulin resistance. Ukr Biochem J. 2018;90(2):14-23. CrossRef
  31. Zhukov OD, Berdyshev AH, Kosiakova HV, Klimashevskiy VM, Gorid’ko TM, Meged OF, Hula NM. N-stearoylethanolamine effect on the level of 11-hydroxycorticosteroids, cytokines IL-1, IL-6 and TNFalpha in rats with nonspecific inflammation caused by thermal burn of skin. Ukr Biochem J. 2014; 86(3):88-97. (In Ukrainian). PubMed, CrossRef
  32. Berdyshev AG, Kosiakova HV, Onopchenko OV, Panchuk RR, Stoika RS, Hula NM. N-Stearoylethanolamine suppresses the pro-inflammatory cytokines production by inhibition of NF-κB translocation. Prostaglandins Other Lipid Mediat. 2015; 121(Pt A):91-96. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.