Ukr.Biochem.J. 2020; Volume 92, Issue 4, Jul-Aug, pp. 85-95

doi: https://doi.org/10.15407/ubj92.04.085

The influence of coordinative tartrate and malatogermanate compounds on the activity of α-L-rhamnosidase preparations from Penicillium tardum, Eupenicillium erubescens and Cryptococcus albidus

О. V. Gudzenko1, L. D. Varbanets1*, І. I. Seifullina2,
E. А. Chebanenko2, E. Е. Martsinko2, Е. V. Аfanasenko2

1Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv;
2Mechnikov Odessa National State University, Ukraine;
*e-mail: varbanets_imv@ukr.net

Received: 26 November 2019; Accepted: 15 May 2020

Recently enzyme preparations of microbial origin become increasingly important in different industries. Preparations of α-L-rhamnosidase are used in the pharmaceutical industry as well as in scientific work as a tool for analytical research. We have obtained purified α-L-rhamnosidase preparations from Penicillium tardum, Eupenicillium erubescens and Cryptococcus albidus microorganism strains which are effective enzyme producers. The aim of the study was to estimate the ability of germanium coordination compounds to enhance enzyme catalytic activity. The effects of 11 heterometal mixed ligand tartrate (malate-)germanate compounds at 0.01 and 0.1% concentration on the activity of α-L-rhamnosidase preparations from Penicillium tardum IMV F-100074, Eupenicillium erubescens and Cryptococcus albidus 1001 were studied at 0.5 and 24 h exposition. The inhibitory effect of [Ni(bipy)3]4[{Ge2(OH)2(Tart)2}3Cl2]·15H2 on P. tardum α-L-rhamnosidase was revealed. All studied compounds except [CuCl(phen)2][Ge(OH)(HMal)2] were shown to increase activity of P. tardum α-L-rhamnosidase at a longer term of exposition. Activity of E. erubescens α-L-rhamnosidase was shown to be stimulated by d-metal cation-free compounds. C. albidus α-L-rhamnosidase occurred to be insensitive to all compounds studied.

Keywords: , , , ,


References:

  1. Yadav V, Yadav PK, Yadav S, Yadav KDS. Alpha-L-rhamnosidase: a review. Proc Biochem. 2010; 45(8): 1226-1235. CrossRef
  2. Yadav S, Yadava S, Yadav KDS. α-L-rhamnosidase Selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorg Chem. 2017;70:222-228. PubMed, CrossRef
  3. Puri M. Updates on naringinase: structural and biotechnological aspects. Appl Microbiol Biotechnol. 2012;93(1):49-60.  PubMed, CrossRef
  4. Gudzenko OV, Varbanets LD. Purification and physico-chemical properties of Cryptococcus albidus 1001 alpha-L-rhamnosidase. Mikrobiol Zh. 2012;74(6):16-23. (In Russian). PubMed
  5. Varbanets LD, Gudzenko OV, Borzova NV. Rhamnosidase from Eupenicillium erubescens: purification and characterization. Nauka i Studia. 2013;41(109):11–23.
  6. Gudzenko OV, Varbanets LD. Purification and physico-chemical properties of α-L-rhamnosidase Penicillium tardum. Mikrobiol Zh. 2016;78(1):13-22. (In Ukrainian). PubMed
  7. Borzova N, Gudzenko O, Varbanets L. Purification and characterization of a naringinase from Cryptococcus albidus. Appl Biochem Biotechnol. 2018;184(3):953-969. PubMed, CrossRef
  8. Gudzenko EV, Borzova NV, Varbanets LD. Influence of metal ions and specific chemical reagents on activity of alpha-L-rhamnosidase of Eupenicillium Erubescens. Ukr Biokhim Zhurn. 2012;84(2):30-41. (In Russian).  PubMed
  9. Gudzenko OV, Borzova NV, Varbanets LD. Influence of metal ions and specific chemical reagents of the alpha-L- rhamnosidase activity of Penicillium tardum. Mikrobiol Zh. 2018; 80(6): 3-14. (In Ukrainian).  CrossRef
  10. Shi FN. Cunha-Silva L, Almeida Paz FA,  Hardie MJ,  Klinowski J, Rocha J,  Trindade T. A novel germanium(IV) oxalate complex: [Ge(OH)2(C2O4)2]2−. Inorg Chem Commun. 2008;11(3):283-287. CrossRef
  11. Seifullina II, Martsinko EE,  Afanasenko EV. Design and synthesis of new homo- and heterometal coordination compounds of Germanium(IV) for preparation of low toxic drugs with a wide therapeutic action. Visn Odes Nac Univ Him. 2015;4(56):6-17.  CrossRef
  12. Lukianchuk VD, Seifullina II, Martsinko OE, Shevchuk OO. Cerebroprotection by Germanium coordination compounds in experimental acute global brain ischemia. Int J Med Med Res. 2018;4(1):60-66.   CrossRef
  13. Asai K. Miracle Cure: Organic Germanium, Japan Publ. Inc., Tokyo, 1980.
  14. Asai K. Organic Germanium: A Medical Godsend, Ed. L. Kagakusha, Tokyo, 1977.
  15. Lukevics E, Gar TK. Biological Activity of Germanium Compounds, Zinatne, Riga, 1990.
  16. Lukevics E, Ignatovich L, Biological activity of organogermanium compounds. PATAI’s Chemistry of Functional Groups. John Wiley & Sons, Ltd, 2009.  CrossRef
  17. Gudzenko OV,  Varbanets LD,  Seifullina II, Martsinko EE,  Pirozhok OV,  Chebanenko EA. Germanium coordination compounds for increasing of α-L-rhamnosidase activity. Biotechnol Acta. 2019;12(4):19-26. CrossRef
  18. Varbanets LD, Mаtselyukh ЕV, Gudzenko ЕV, Bоrzоvа NV, Sеifullina II,  Khitrich GN Coordinative compounds of zinc with N-substituted thiоcаrbаmоil-N′-pentаmethylеnsulfenаmides – activity mоdifiers of еnzymes of proteolytic and glycolytic action. Ukr Biokhim Zhurn. 2011;83(3):25-36. (In Russian). PubMed
  19. Varbanets LD, Matselyukh ОV, Nidyalkova NА, Аvdiyuk ЕV, Gudzenko EV, Seifullina II, Маsаnоvets GN, Khitrich NV. The coordination compounds of cobalt (ІІ, ІІІ) with dithiocarbamic acid derivatives — modificators of hydrolytic enzymes activity. Biotechnol Acta. 2013;6(1):73-80. (In Ukrainian).
  20. Seifullina I, Martsinko E, Chebanenko E, Afanasenko E, Dyakonenko V, Shishkina S. Supramolecular organization and structure of Cu(II) and Ni(II), 2,2′-bipyridine cations with tartratogermanate anions. Polyhedron. 2019;169:261-265. CrossRef
  21. Seifullina I, Martsinko E, Chebanenko E, Afanasenko E, Shishkina S, D’yakonenko V. Complex Formation Products in the GeO2–Tartaric Acid–CuCl2–1,10-Phenanthroline System: Syntheses and Structures. Russ J Coord Chem. 2019;45(7):496-504. CrossRef
  22. Seifullina I, Martsinko E, Chebanenko E, Afanasenko Е, Dyakonenko V, Shishkina S. Synthesis, structure and investigation of germanium(IV) and copper(II) complexes with malic acid and 1,10ʹ-phenanthroline. Chem J Moldova. 2017;12(2):28-33. CrossRef
  23. Davis DW. Determination of flavonones in citrus fruits. Anal Biochem. 1947; 19(7): 476-478.
  24. Paniotova GP, Antonenko PB, Godovan VV, Seifullina II, Chebanenko OA, Lobashova KH. Experimental evaluation of acute toxicity heterometalic new compounds – tartratogermanat cooper and zinc. Zaporozhye Med J. 2017;19(6):813-818. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.