Ukr.Biochem.J. 2020; Volume 92, Issue 6, Nov-Dec, pp. 95-104


The effects of endurance training and estrogen-related receptor α disruption on mitofusin 1 and 2, GLUT2, PPARβ/δ and SCD1 expression in the liver of diabetic rats

B. Shahouzehi1,2, Y. Masoumi-Ardakani3, H. Fallah4, S. Aminizadeh3*

1Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran;
2Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran;
3Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran;
4Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran;

Received: 19 March 2020; Accepted: 13 November 2020

Diabetes is a progressive and metabolic disease with a high prevalence throughout the world. Physical activity is considered as an intervention to improve diabetes. Intervention such as estrogen-related receptor α (ERRα) inhibition is considered as a new way to manage diabetes. In current study, we examined ERRα inhibition along with exercise training (ET) on the gene expression of mitofusin 1 (MFN1), MFN2, glucose transporter 2 (GLUT2), peroxisome proliferator-activated receptor beta or delta (PPARβ/δ), and stearoyl-CoA desaturase 1 (SCD1) in rat liver. The animals were divided into 8 groups (n = 7); 1, Control (CTL) 2, Diabetes (D) 3, ERRα inhibition (ERRI) 4, Endurance Training (ET) 5, Diabetes+ERRα inhibition (D+ERRI) 6, Diabetes+Endurance training (D+ET) 7, Endurance Training +ERRα inhibition (ET+ERRI) 8, Diabetes+Endurance Training+ERRα inhibition (D+ET+ERRI). The liver tissues were used for Real-Time PCR. The results showed that ET significantly increased PPARδ, MFN1 and, MFN2 expression in control rats compared to DM group. In ERRI group, SCD1, GLUT2, MFN1 and MFN2 gene expression was increased compared to CTL and D group. In CTL and D rats, the combination of ERRα inhibition and ET significantly and additively increased MFN1, MFN2, and GLUT2 expression. Overall­, the combination of ET and ERRα inhibition probably can be considered as a potential therapeutic intervention for treatment of metabolic diseases including diabetes and cardiovascular disease.

Keywords: , , , , ,


  1. Thent ZC, Das S, Henry LJ. Role of exercise in the management of diabetes mellitus: the global scenario. PLoS One. 2013;8(11):e80436. PubMed, PubMedCentral, CrossRef
  2. Roden M. Exercise in type 2 diabetes: to resist or to endure? Diabetologia. 2012;55(5):1235-1239. PubMed, PubMedCentral, CrossRef
  3. Rezaei S, Molanouri Shamsi M, Mahdavi M, Jamali A, Prestes J, Tibana RA, Navalta JW, Voltarelli FA. Endurance exercise training decreased serum levels of surfactant protein D and improved aerobic fitness of obese women with type-2 diabetes. Diabetol Metab Syndr. 2017;9:74. PubMed, PubMedCentral, CrossRef
  4. Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Dériaz O, Zorzano A, Gobelet C, Kralli A, Russell AP. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol. 2005;567(Pt 1):349-358. PubMed, PubMedCentral, CrossRef
  5. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR. Endurance training in humans leads to fiber type–specific increases in levels of peroxisome proliferator–activated receptor-γ coactivator-1 and peroxisome proliferator–activated receptor-α in skeletal muscle. Diabetes. 2003;52(12):2874-2881.  CrossRef
  6. Cheng S, Kujala UM. Exercise in type 2 diabetes: The mechanisms of resistance and endurance training. J Sport Health Sci. 2012;1(2):65-66. CrossRef
  7. Ishihara N, Eura Y, Mihar K.  Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004;117(Pt 26):6535-6546. PubMed, CrossRef
  8. Eskiocak B, Ali A, White MA.  The estrogen-related receptor α inverse agonist XCT 790 is a nanomolar mitochondrial uncoupler. Biochemistry. 2014;53(29):4839-4846. PubMed, PubMedCentral, CrossRef
  9. Audet-Walsh É, Giguére V. The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin. 2015;36(1):51-61. PubMed, PubMedCentral, CrossRef
  10. Burcelin R, Eddouks M, Kande J, Assan R, Girard J.Evidence that GLUT-2 mRNA and protein concentrations are decreased by hyperinsulinaemia and increased by hyperglycaemia in liver of diabetic rats. Biochem J. 1992;288(Pt 2):675-679. PubMed, PubMedCentral, CrossRef
  11. Burkhardt BR, Parker MJ, Zhang YC, Song S, Wasserfall CH, Atkinson MA. Glucose transporter-2 (GLUT2) promoter mediated transgenic insulin production reduces hyperglycemia in diabetic mice. FEBS Lett. 2005;579(25):5759-5764. PubMed, CrossRef
  12. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 201;58(2):221-232. PubMed, CrossRef
  13. Rathinam A, Pari L. Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem Biol Interact. 2016;256:161-166. PubMed, CrossRef
  14. Sandoval-Muníz RJ, Vargas-Guerrero B, Guzmán TJ, García-López PM, Martínez-Ayala AL, Domínguez-Rosales JA, Gurrola-Díaz CM. Lupin gamma conglutin protein: effect on Slc2a2, Gck and Pdx-1 gene  expression and GLUT2 levels in diabetic rats. Rev Bras Farmacog. 2018;28(6):716-723.  CrossRef
  15. Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, Leturque A. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J. 1996;314(Pt 3):903-909. PubMed, PubMedCentral, CrossRef
  16. Jurysta C, Nicaise C, Giroix MH, Cetik S, Malaisse WJ, Sener A. Comparison of GLUT1, GLUT2, GLUT4 and SGLT1 mRNA expression in the salivary glands and six other organs of control, streptozotocin-induced and Goto-Kakizaki diabetic rats. Cell Physiol Biochem. 2013;31(1):37-43. PubMed, CrossRef
  17. Xue R, Yang J, Jia L, Zhu X, Wu J, Zhu Y, Meng Q. Mitofusin2, as a protective target in the liver, controls the balance of apoptosis and autophagy in acute-on-chronic liver failure. Front Pharmacol. 2019;10:601. PubMed, PubMedCentral, CrossRef
  18. Kawalec M, Beręsewicz M, Zabłocki K, Zabłocka B. Mitofusin 2 and mitochondrial dynamics in norm and pathology. Postepy Biochem. 2016;62(2):149-157. PubMed
  19. Soriano FX, Liesa M, Bach D, Chan DC, Palacin M, Zorzano A. Evidence for a Mitochondrial Regulatory Pathway Defined by Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α, Estrogen-Related Receptor-α, and Mitofusin 2. Diabetes. 2006;55(6):1783-1791. CrossRef
  20. Koo JH, Kang EB. Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats. J Exerc Nutrition Biochem. 2019;23(1):28-35. PubMed, PubMedCentral, CrossRef
  21. Luquet S, Gaude C, Holst D, Lopez-Sorian J, Jehl-Pietri C, Fredenrich A, Grimaldi PA. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta. 2005;1740(2):313-317.  PubMed, CrossRef
  22. Liu Y, Colby JK, Zuo X, Jaoude J, Wei D, Shureiqi I. The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor. Int J Mol Sci. 2018;19(11):3339. PubMed, PubMedCentral, CrossRef
  23. Qin X, Xie X, Fan Y, Tian J, Guan Y, Wang X, Zhu Y, Wang N. Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology. 2008;48(2):432-441. PubMed, CrossRef
  24. Cheang WS, Wong WT, Zhao L, Xu J, Wang L, Lau CW, Chen ZY, Ma RC, Xu A, Wang N, Tian XY, Huang Y. PPARδ is required for exercise to attenuate endoplasmic reticulum stress and endothelial dysfunction in diabetic mice. Diabetes. 2017;66(2):519-528. PubMed, CrossRef
  25. Fan W, Waizenegger W, Lin CS, Sorrentino V, He MX,  Wall CE, Li H, Liddle C, Yu RT, Atkins AR,  Auwerx J, Downes M, Evans RM. PPARδ promotes running endurance by preserving glucose. Cell Metab. 2017;25(5):1186-1193.e4. PubMed, PubMedCentral, CrossRef
  26. Steffensen KR, Gustafsson JA. Putative metabolic effects of the liver X receptor (LXR). Diabetes. 2004;53(Suppl 1):S36-S42. PubMed, CrossRef
  27. Shen Y, Xu X, Yue K, Xu G. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats. Obesity (Silver Spring). 2015;23(5):1000-1006. PubMed, CrossRef
  28. Yasari S, Prud’homme D, Wang D, Jankowski M, Levy E, Gutkowska J, Lavoie JM. Exercise training decreases hepatic SCD-1 gene expression and protein content in rats. Mol Cell Biochem. 2010;335(1-2):291-299. PubMed, CrossRef
  29. Ochiai M, Matsuo T. Increased stearoyl-CoA desaturase index and triglyceride content in the liver of rats after a single bout of swimming exercise. Biosci Biotechnol Biochem. 2012;76(7):1350-1355.  PubMed, CrossRef
  30. Gutiérrez-Juárez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP, Rossetti L. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest. 2006;116(6):1686-1695. PubMed, PubMedCentral, CrossRef
  31. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM.  Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 2007;6(6):484-496. PubMed, CrossRef
  32. Hu JZ, Long H, Wu TD, Zhou Y, Lu HB. The effect of estrogen-related receptor α on the regulation of angiogenesis after spinal cord injury. Neuroscience. 2015;290:570-580. PubMed, CrossRef
  33. Aminizadeh S, Masoumi-Ardakani Y, Shahouzehi B. The effects of PDK4 inhibition on AMPK protein levels and PGC-1α gene expression following endurance training in skeletal muscle of Wistar rats. Ukr Biochem J. 2018;90(6):89-96. CrossRef
  34. Mohammadi A, Fallah H, Shahouzehi B, Najafipour H. miR-33 inhibition attenuates the effect of liver X receptor agonist T0901317 on expression of liver X receptor alpha in mice liver. ARYA Atheroscler. 2017;13(6):257-263. PubMed, PubMedCentral

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.