Ukr.Biochem.J. 2021; Volume 93, Issue 3, May-Jun, pp. 5-12


Regulation of ionized calcium concentration in mitochondria matrix in the absence of exogenous Са(2+)

A. V. Sylenko*, S. G. Shlykov, L. G. Babich,
О. Yu. Chunikhin, S. O. Kosterin

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

Received: 15 September 2021; Accepted: 17 May 2021

Functional activity of mitochondria depends on ionized calcium content in its matrix. Thus, investigation of the ways to influence Ca2+ transport and accumulation in these organelles is an urgent issue. The aim of this work was to evaluate  ionized calcium concentration in the mitochondria matrix in the absence of exoge­nous Ca2+ and in the presence of Mg2+ and ATP in incubation media. The concentration of ionized calcium in mitochondria isolated from the myometrium of non-pregnant rats was measured with the fluorescent probe Fluo-4 AM, mitochondria hydrodynamic diameter was assessed using dynamic light scattering. The ATP concentration-dependent increase in ionized calcium concentration in mitochondria matrix in the absence of exogenous Са2+ and the high level of the total Са2+ accumulation after further addition of exogenous Са2+ were registered. The effect of ATP on Са2+ concentration did not depend on the blockage of mitochondrial PTP with cyclosporine A or on H+-ATPase/ATP-synthase inhibition with oligomycin, instead the addition of 10mM theophylline and 30 mM NaHCO3 to the Mg2+-containing medium led to Са2+ concentration elevation in mitochondria matrix. It was shown that low Ca2+ concentration in the matrix correlated with the increase in mitochondria size, whereas high Ca2+ concentration correlated with relatively smaller size of the organelles. Activation of the soluble adenylyl cyclase by NaHCO3 with simultaneous inhibition of phosphodiesterase by theophylline was accompanied by the decline in Са2+ probe normalized fluorescence in mitochondria matrix under conditions of exogenous Ca2+ introduction. It was suggested that the soluble adenylyl cyclase may be involved in regulation of Са2+ concentration in mitochondria matrix.

Keywords: , , ,


  1. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000;529(Pt 1):57-68. PubMed, PubMedCentral, CrossRef
  2. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105-116. PubMed, PubMedCentral, CrossRef
  3. Duchen MR, Verkhratsky A, Muallem S. Mitochondria and calcium in health and disease. Cell Calcium. 2008;44(1):1-5. PubMed, CrossRef
  4. Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P. Mitochondria in cancer. Cell Stress. 2020;4(6):114-146. PubMed, PubMedCentral, CrossRef
  5. Samanta K, Douglas S, Parekh AB. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS One. 2014;9(7):e101188. PubMed, PubMedCentral, CrossRef
  6. Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium. 2012;52(1):28-35. PubMed, PubMedCentral, CrossRef
  7. Babich LG, Shlykov SG, Kushnarova-Vakal AM, Kupynyak NI, Manko VV, Fomin VP, Kosterin SO. The relationship between the ionized Ca concentration and mitochondrial functions. Ukr Biochem J. 2018; 90(3): 32–40. CrossRef
  8. Dedkova EN, Blatter LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol. 2013;58:125-133. PubMed, PubMedCentral, CrossRef
  9. Elustondo PA, Nichols M, Robertson GS, Pavlov EV. Mitochondrial Ca2+ uptake pathways. J Bioenerg Biomembr. 2017;49(1):113-119. PubMed, CrossRef
  10. Di Benedetto G, Pendin D, Greotti E, Pizzo P, Pozzan T. Ca2+ and cAMP cross-talk in mitochondria. J Physiol. 2014;592(2):305-312. PubMed, PubMedCentral, CrossRef
  11. Zhang F, Zhang L, Qi Y, Xu H. Mitochondrial cAMP signaling. Cell Mol Life Sci. 2016;73(24):4577-4590. PubMed, PubMedCentral, CrossRef
  12. Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T. Mitochondrial Ca²⁺ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 2013;17(6):965-975. PubMed, CrossRef
  13. Kosterin SA, Bratkova  NF, Kurskiy  MD. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia. 1985;50(8):1350-1361. (In Russian). PubMed
  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
  15. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, I Szabó, Lippe G, Bernardi P. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA. 2013;110(15):5887-5892. PubMed, PubMedCentral, CrossRef
  16. Hausenloy DJ, Boston-Griffiths EA, Yellon DM. Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol. 2012;165(5):1235-1245. PubMed, PubMedCentral, CrossRef
  17. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365-451. PubMed, CrossRef
  18. Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther. 2013;347(3):589-598. PubMed, PubMedCentral, CrossRef
  19. Valsecchi F, Konrad C, Manfredi G. Role of soluble adenylyl cyclase in mitochondria. Biochim Biophys Acta. 2014;1842(12 Pt B):2555-2560. PubMed, PubMedCentral, CrossRef
  20. Jakobsen E, Lange SC, Andersen JV, Desler C, Kihl HF, Hohnholt MC, Stridh MH, Rasmussen LJ, Waagepetersen HS, Bak LK. The inhibitors of soluble adenylate cyclase 2-OHE, KH7, and bithionol compromise mitochondrial ATP production by distinct mechanisms. Biochem Pharmacol. 2018;155:92-101. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.