Ukr.Biochem.J. 2023; Volume 95, Issue 1, Jan-Feb, pp. 31-43

doi: https://doi.org/10.15407/ubj95.01.031

Novel putative ligands of cannabinoid receptors: synthesis and effects on cell signaling and neuronal functions

J. Senkiv1, A. Kryshchyshyn-Dylevych2*, D. Khylyuk3,
M. Wujec3, R. Stoika1*, A. J. Irving4, R. Lesyk2,5

1Department of Regulation Cell Proliferation and Apoptosis, Institute of Cell Biology,
National Academy of Sciences of Ukraine, Lviv;
2Department of Pharmaceutical, Organic and Bioorganic Chemistry,
Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
3Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division,
Medical University of Lublin, Lublin, Poland;
4School of Biomedical and Biomolecular Science, University College of Dublin, Dublin, Ireland;
5Department of Biotechnology and Cell Biology, Medical College,
University of Information Technology and Management in Rzeszow, Rzeszow, Poland;
*e-mail: stoika.rostyslav@gmail.com; kryshchyshyn.a@gmail.com

Received: 01 December 2022; Revised: 28 February 2023;
Accepted: 13 April 2023; Available on-line: 27 April 2023

Cannabinoid ligands are known to possess neuroprotective actions and may have utility in the treatment of neurodegeneration. The major targets for cannabinoids include the classical CB1 cannabinoid receptor, as well as the novel cannabinoid receptor GPR55 which binds to many synthetic cannabinoid ligands. In this study, novel thiopyranothiazoles 1, 3, 4, 6, and 7 were synthesized and their pharmacological activity as potential cannabinoid-like ligands was evaluated in glioblastoma cells, cultured cortical neurons, and cells of HEK293 line expressing GPR55. Stimulation of protein kinase ERK1/2, MAP-kinases and cAMP response element binding protein (CREB) was evaluated using Western-blot analysis. CREB activation was additionally monitored by means of confocal imaging of nuclear phospho-CREB labeling. Docking simulation confirmed the good affinity of the synthesized compounds to CB1 and CB2 receptors. Striking effects of the chromeno[4′,3′:4,5]thiopyrano[2,3-d][1,3]thiazol with ethylacetate moiety (3) and isothiochromeno[4a,4-d]thiazole with phenazone fragment (7) on pCREB activation as the indicator of stimulation of the pathway beneficial for neurons survival were observed.

Keywords: , , , , ,


References:

  1. Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit Rev Toxicol. 2020;50(5):359-382. PubMed, CrossRef
  2. Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16(1):9-29. PubMed, CrossRef
  3. Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urbán GM, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science. 2007;316(5828):1212-1216. PubMed, PubMedCentral, CrossRef
  4. Moreno E, Andradas C, Medrano M, Caffarel MM, Pérez-Gómez E, Blasco-Benito S, Gómez-Cañas M, Pazos MR, Irving AJ, Lluís C, Canela EI, Fernández-Ruiz J, Guzmán M, McCormick PJ, Sánchez C. Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling. J Biol Chem. 2014;289(32):21960-21972. PubMed, PubMedCentral, CrossRef
  5. Anavi-Goffer S, Baillie G, Irving AJ, Gertsch J, Greig IR, Pertwee RG, Ross RA. Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem. 2012;287(1):91-104. PubMed, PubMedCentral, CrossRef
  6. Kopach O, Vats J, Netsyk O, Voitenko N, Irving A, Fedirko N. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca(2+) signalling. J Cell Sci. 2012;125(Pt 8):1884-1895. PubMed, CrossRef
  7. Singlár Z, Ganbat N, Szentesi P, Osgonsandag N, Szabó L, Telek A, Fodor J, Dienes B, Gönczi M, Csernoch L, Sztretye M. Genetic Manipulation of CB1 Cannabinoid Receptors Reveals a Role in Maintaining Proper Skeletal Muscle Morphology and Function in Mice. Int J Mol Sci. 2022;23(24):15653.
    PubMed, PubMedCentral, CrossRef
  8. Haugh O, Penman J, Irving AJ, Campbell VA. The Emerging Role of the Cannabinoid Receptor Family in Peripheral and Neuro-immune Interactions. Curr Drug Targets. 2016;17(16):1834-1840. PubMed, CrossRef
  9. Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A. Saraf SK. 4-Thiazolidinones: the advances continue… Eur J Med Chem. 2014;72:52-77. PubMed, CrossRef
  10. Lesyk, RB, Zimenkovsky BS. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr Org Chem. 2004;8(16):1547-1577. CrossRef
  11. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA. 2003;100(13):7977-7982. PubMed, PubMedCentral, CrossRef
  12. Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48(21):6523-6543. PubMed, CrossRef
  13. Kim HJ, Choo H, Cho YS, No KT, Pae AN. Novel GSK-3beta inhibitors from sequential virtual screening. Bioorg Med Chem. 2008;16(2):636-643. PubMed, CrossRef
  14. Kryshchyshyn A, Roman O, Lozynskyi A, Lesyk, R. Thiopyrano[2,3- d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Sci Pharm. 2018;86(2):26. PubMed, PubMedCentral, CrossRef
  15. Kryshchyshyn A, Atamanyuk D, Lesyk R. Fused Thiopyrano[2,3-d]thiazole Derivatives as Potential Anticancer Agents. Sci Pharm. 2012;80(3):509-529. PubMed, PubMedCentral, CrossRef
  16. Matiychuk VS, Lesyk RB, Obushak MD, Gzella A, Atamanyuk DV, Ostapiuk AP, Kryshchyshyn AP. New domino-Knoevenagel–hetero-Diels–Alder reaction. Tetrahedron Lett. 2008;49(31):4648–4651. CrossRef
  17. Liu X, Zu YG, Fu YJ, Yao LP, Gu CB, Wang W, Efferth T. Antimicrobial activity and cytotoxicity towards cancer cells of Melaleuca alternifolia (tea tree) oil. Eur Food Res Technol. 2009;229(2):247–253. CrossRef
  18. Heffeter P, Jakupec MA, Korner W, Chiba P, Pirker C, Dornetshuber R, Elbling L, Sutterluty H, Micksche M, Keppler BK, Berger W. Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol. 2007;73(12):1873-1886. PubMed, PubMedCentral, CrossRef
  19. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–1662. CrossRef
  20. Shim JY, Bertalovitz AC, Kendall DA. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. J Biol Chem. 2011;286(38):33422-33435. PubMed, PubMedCentral, CrossRef
  21. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature. 2017;547(7664):468-471. PubMed, PubMedCentral, CrossRef
  22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera — a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. PubMed, CrossRef
  23. Ai R, Chang CE. Ligand-specific homology modeling of human cannabinoid (CB1) receptor. J Mol Graph Model. 2012;38:155-164. PubMed, CrossRef
  24. Nishi K, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci. 1997;17(21):8147-8155. PubMed, PubMedCentral, CrossRef
  25. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004;44:269-296. PubMed, CrossRef
  26. Hemmings HC Jr, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature. 1984;310(5977):503-505. PubMed, CrossRef
  27. Ross RA. The enigmatic pharmacology of GPR55. Trends Pharmacol Sci. 2009;30(3):156-163. PubMed, CrossRef
  28. Schrodinger Release 2014-1, Jaguar, Version 8.3, Schrodinger LLC, New York, NY, 2014.
  29. Wortmann M. Dementia: a global health priority – highlights from an ADI and World Health Organization report. Alzheimers Res Ther. 2012;4(5):40. PubMed, PubMedCentral, CrossRef
  30. Svízenská I, Dubový P, Sulcová A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures–a short review. Pharmacol Biochem Behav. 2008;90(4):501-511. PubMed, CrossRef
  31. Brown AJ. Novel cannabinoid receptors. Br J Pharmacol. 2007;152(5): 567-575. PubMed, PubMedCentral, CrossRef
  32. Demuth DG, Molleman A. Cannabinoid signalling. Life Sci. 2006;78(6):549-563. PubMed, CrossRef
  33. Elphick MR, Egertova M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci. 2001;356(1407):381-408. PubMed, PubMedCentral, CrossRef
  34. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127-148. PubMed, CrossRef
  35. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB. Downregulation of CREB expression in Alzheimer’s brain and in Ab-treated rat hippocampal neurons. Mol Neurodegener. 2011;6(1):60. CrossRef
  36. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28(8):436-445. PubMed, CrossRef
  37. Marie H, Morishita W, Yu X, Calakos N, Malenka RC. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron. 2005;45(5):741-752. PubMed, CrossRef
  38. Finbeiner S. CREB couples neurotrophin signals to survival messages. Neuron. 2000;25(1):11-14. PubMed, CrossRef
  39. De Cesare D, Jacquot S, Hanauer A, Sassone-Corsi P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc Natl Acad Sci USA. 1998;95(21):12202-12207. PubMed, PubMedCentral, CrossRef
  40. Fisher TL, Blenis J. Evidence for two catalytically active kinase domains in pp90rsk. Mol Cell Biol. 1996;16(3):1212-1219. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.