Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 5-22
doi: https://doi.org/10.15407/ubj97.06.005
Human cells response to electromagnetic waves of radio and microwave frequencies
S. Souchelnytskyi
Oranta CancerDiagnostics AB, Uppsala, Sweden;
e-mail: serhiy8085@gmail.com
Received: 23 June 2025; Revised: 17 August 2025;
Accepted: 28 November 2025; Available on-line: 23 December 2025
Human cells both generate and absorb electromagnetic waves (EMW), but information about sensing and responding to EMW at different Hz frequencies is still fragmentary. The reported impact of radio (RF) and microwave (MW) frequencies is variable, from harmful to human health to applications promising for novel diagnostics and treatment of diseases, e.g., cancer. The review highlights both recent achievements in elucidation of molecular mechanisms of RF and MW effects and a direction for their successful practical application in humans.
Keywords: diagnostics, electromagnetic waves, human cells, microwaves, molecular mechanisms, radio frequency, treatment
References:
- Radiation: Electromagnetic fields. Radiation and health (RAD), World Health Organization, 4 August 2016. https://www.who.int/news-room/questions-and-answers/item/radiation-electromagnetic-fields. Accessed April 6, 2025. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/power-density-(w-m-)
- Lipkova JJ, Cechak J. Human electromagnetic emission in the ELF band. Measurement Sci Rev. 2005; 5(2): 29-32.
- Brazdzionis J, Wiginton J 4th, Patchana T, Savla P, Hung J, Zhang Y, Miulli DE. Measuring the Electromagnetic Field of the Human Brain at a Distance Using a Shielded Electromagnetic Field Channel. Cureus. 2022;14(3):e23626. PubMed, PubMedCentral, CrossRef
- Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28(1):51. PubMed, PubMedCentral, CrossRef
- Tuszynski JA, Costa F. Low-energy amplitude-modulated radiofrequency electromagnetic fields as a systemic treatment for cancer: Review and proposed mechanisms of action. Front Med Technol. 2022;4:869155. PubMed, PubMedCentral, CrossRef
- Fraser A, Frey AH. Electromagnetic emission at micron wavelengths from active nerves. Biophys J. 1968;8(6):731-734. PubMed, PubMedCentral, CrossRef
- Zapata F, Pastor-Ruiz V, Ortega-Ojeda F, Montalvo G, Ruiz-Zolle AV, García-Ruiz C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states – A review. J Photochem Photobiol B. 2021;216:112141. PubMed, CrossRef
- Tsuchida K, Iwasa T, Kobayashi M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin. J Photochem Photobiol B. 2019;198:111562. PubMed, CrossRef
- Scholkmann F, Fels D, Cifra M. Non-chemical and non-contact cell-to-cell communication: a short review. Am J Transl Res. 2013;5(6):586-593. PubMed, PubMedCentral
- Crocetti S, Beyer C, Schade G, Egli M, Fröhlich J, Franco-Obregón A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One. 2013;8(9):e72944. PubMed, PubMedCentral, CrossRef
- Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS One. 2015;10(4):e0124136. PubMed, PubMedCentral, CrossRef
- Sadeghipour R, Ahmadian S, Bolouri B, Pazhang Y, Shafiezadeh M. Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D). Electromagn Biol Med. 2012;31(4):425-435. PubMed, CrossRef
- Franco-Obregón A. Harmonizing magnetic mitohormetic regenerative strategies: developmental implications of a calcium-mitochondrial axis invoked by magnetic field exposure. Bioengineering (Basel). 2023;10(10):1176. PubMed, PubMedCentral, CrossRef
- Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief magnetic field exposure stimulates doxorubicin uptake into breast cancer cells in association with TRPC1 expression: a precision oncology methodology to enhance chemotherapeutic outcome. Cancers (Basel). 2024;16(22):3860. PubMed, PubMedCentral, CrossRef
- Pasi F, Fassina L, Mognaschi ME, Lupo G, Corbella F, Nano R, Capelli E. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells. Anticancer Res. 2016;36(11):5821-5826. PubMed, CrossRef
- Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Borea PA, Varani K. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PLoS One. 2012;7(6):e39317. PubMed, PubMedCentral, CrossRef
- Ledda M, Megiorni F, Pozzi D, Giuliani L, D’Emilia E, Piccirillo S, Mattei C, Grimaldi S, Lisi A. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR “In Vitro” effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. PLoS One. 2013;8(4):e61535. PubMed, PubMedCentral, CrossRef
- Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani SN, Dini L, Darvishzadeh-Mahani F, Ahmadi M. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn Biol Med. 2017;36(3):238-247. PubMed, CrossRef
- Cios A, Ciepielak M, Lieto K, Matak D, Lewicki S, Palusińska M, Stankiewicz W, Szymański Ł. Extremely low-frequency electromagnetic field (ELF-EMF) induced alterations in gene expression and cytokine secretion in clear cell renal carcinoma cells. Med Pr. 2024;75(2):133-141. PubMed, CrossRef
- Merighi S, Nigro M, Travagli A, Fernandez M, Vincenzi F, Varani K, Pasquini S, Borea PA, Salati S, Cadossi R, Gessi S. Effect of Low-Frequency, Low-Energy Pulsed Electromagnetic Fields in Neuronal and Microglial Cells Injured with Amyloid-Beta. Int J Mol Sci. 2024;25(23):12847. PubMed, PubMedCentral, CrossRef
- Reale M, Kamal MA, Patruno A, Costantini E, D’Angelo C, Pesce M, Greig NH. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS One. 2014;9(8):e104973. PubMed, PubMedCentral, CrossRef
- World Health Organization Environmental Health Criteria 137. Electromagnetic Fields (300 Hz-300 GHz). 1993, Geneva, Switzerland: WHO. https://iris.who.int/bitstream/handle/10665/37112/WHO_EHC_137_eng.pdf, Accessed April 20, 2025.
- Kursawe M, Stunder D, Krampert T, Kaifie A, Drießen S, Kraus T, Jankowiak K. Human detection thresholds of DC, AC, and hybrid electric fields: a double-blind study. Environ Health. 2021;20(1):92. PubMed, PubMedCentral, CrossRef
- Blondin JP, Nguyen DH, Sbeghen J, Goulet D, Cardinal C, Maruvada PS, Plante M, Bailey WH. Human perception of electric fields and ion currents associated with high-voltage DC transmission lines. Bioelectromagnetics. 1996;17(3):230-241. CrossRef
- Lövsund P, Oberg PA, Nilsson SE, Reuter T. Magnetophosphenes: a quantitative analysis of thresholds. Med Biol Eng Comput. 1980;18(3):326-334. PubMed, CrossRef
- Lisi A, Foletti A, Ledda M, Rosola E, Giuliani L, D’Emilia E, Grimaldi S. Extremely low frequency 7 Hz 100 microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT. Electromagn Biol Med. 2006;25(4):269-280. PubMed, CrossRef
- Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, Sacco D, D’Emilia E, Grimaldi S. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics. 2004;25(2):118-126. PubMed, CrossRef
- Bedja-Iacona L, Scorretti R, Ducrot M, Vollaire C, Franqueville L. Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase. Bioelectromagnetics. 2024;45(6):293-309. PubMed, CrossRef
- Yang C, Xu L, Liao F, Liao C, Zhao Y, Chen Y, Yu Q, Peng B, Liu H. Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis. Sci Rep. 2024;14(1):19027. PubMed, PubMedCentral, CrossRef
- Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 2002;7(1):18-23. PubMed, CrossRef
- Wang MH, Jian MW, Tai YH, Jang LS, Chen CH. Inhibition of B16F10 Cancer Cell Growth by Exposure to the Square Wave with 7.83+/-0.3Hz Involves L- and T-Type Calcium Channels. Electromagn Biol Med. 2021;40(1):150-157. PubMed, CrossRef
- Cai W, Xiao Y, Yan J, Peng H, Tu C. EMF treatment delays mesenchymal stem cells senescence during long-term in vitro expansion by modulating autophagy. Front Cell Dev Biol. 2024;12:1489774. PubMed, PubMedCentral, CrossRef
- Song K, Hu J, Yang M, Xia Y, He C, Yang Y, Zhu S. Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway. J Transl Med. 2024;22(1):741. PubMed, PubMedCentral, CrossRef
- Gualdi G, Costantini E, Reale M, Amerio P. Wound repair and extremely low frequency-electromagnetic field: insight from in vitro study and potential clinical application. Int J Mol Sci. 2021;22(9):5037. PubMed, PubMedCentral, CrossRef
- Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG, Ferrari D, Imbriani M, Visai L. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access. 2013;2(4):283-294. PubMed, PubMedCentral, CrossRef
- Liu X, Zhao L, Yu D, Ma S, Liu X. Effects of extremely low frequency electromagnetic field on the health of workers in automotive industry. Electromagn Biol Med. 2013;32(4):551-559. PubMed, CrossRef
- Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone regeneration revolution: pulsed electromagnetic field modulates macrophage-derived exosomes to attenuate osteoclastogenesis. Int J Nanomedicine. 2024;19:8695-8707. PubMed, PubMedCentral, CrossRef
- Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS therapy on the expression of genes related to peripheral nerve regeneration in schwann cells. Int J Mol Sci. 2024;25(23):12791. PubMed, PubMedCentral, CrossRef
- Liao F, Li Y, Zhang Z, Yu Q, Liu H. Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study. BMC Complement Med Ther. 2025;25(1):50. PubMed, PubMedCentral, CrossRef
- Wasak A, Drozd R, Jankowiak D, Rakoczy R. Rotating magnetic field as tool for enhancing enzymes properties – laccase case study. Sci Rep. 2019;9(1):3707. PubMed, PubMedCentral, CrossRef
- Portaccio M, De Luca P, Durante D, Grano V, Rossi S, Bencivenga U, Lepore M, Mita DG. Modulation of the catalytic activity of free and immobilized peroxidase by extremely low frequency electromagnetic fields: dependence on frequency. Bioelectromagnetics. 2005;26(2):145-52. PubMed, CrossRef
- Caliga R, Maniu CL, Mihasan M. ELF-EMF exposure decreases the peroxidase catalytic efficiency in vitro. Open Life Sci. 2016;11(1):71-77. CrossRef
- Morelli A, Ravera S, Panfoli I, Pepe IM. Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch Biochem Biophys. 2005;441(2):191-198. PubMed, CrossRef
- Teranishi M, Ito M, Huang Z, Nishiyama Y, Masuda A, Mino H, Tachibana M, Inada T, Ohno K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int J Mol Sci. 2024;25(20):11315. PubMed, PubMedCentral, CrossRef
- Wu H, Yang L, Liu H, Zhou D, Chen D, Zheng X, Yang H, Li C, Chang J, Wu A, Wang Z, Ren N, Lv S, Liu Y, Jia M, Lu J, Liu H, Sun G, Liu Z, Liu J, Chen L. Exploring the efficacy of tumor electric field therapy against glioblastoma: An in vivo and in vitro study. CNS Neurosci Ther. 2021;27(12):1587-1604. PubMed, PubMedCentral, CrossRef
- Beneduci A, Chidichimo G, Tripepi S, Perrotta E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res. 2005;25(2A):1009-1013. PubMed
- Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288-3295. PubMed, CrossRef
- Kirson ED, Dbalý V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, Mordechovich D, Steinberg-Shapira S, Gurvich Z, Schneiderman R, Wasserman Y, Salzberg M, Ryffel B, Goldsher D, Dekel E, Palti Y. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA. 2007;104(24):10152-10157. PubMed, PubMedCentral, CrossRef
- Jones TH, Song JW, Abushahin L. Tumor treating fields: An emerging treatment modality for thoracic and abdominal cavity cancers. Transl Oncol. 2022;15(1):101296. PubMed, PubMedCentral, CrossRef
- Riegel DC, Bureau BL, Conlon P, Chavez G, Connelly JM. Long-term survival, patterns of progression, and patterns of use for patients with newly diagnosed glioblastoma treated with or without Tumor Treating Fields (TTFields) in a real-world setting. J Neurooncol. 2025;173(1):49-57. PubMed, PubMedCentral, CrossRef
- Curley SA, Palalon F, Lu X, Koshkina NV. Noninvasive radiofrequency treatment effect on mitochondria in pancreatic cancer cells. Cancer. 2014;120(21):3418-3425. PubMed, PubMedCentral, CrossRef
- Ware MJ, Tinger S, Colbert KL, Corr SJ, Rees P, Koshkina N, Curley S, Summers HD, Godin B. Radiofrequency treatment alters cancer cell phenotype. Sci Rep. 2015;5:12083. PubMed, PubMedCentral, CrossRef
- Wust P, Veltsista PD, Oberacker E, Yavvari P, Walther W, Bengtsson O, Sterner-Kock A, Weinhart M, Heyd F, Grabowski P, Stintzing S, Heinrich W, Stein U, Ghadjar P. Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells. Cancers (Basel). 2022;14(21):5349. PubMed, PubMedCentral, CrossRef
- Wust P, Kortüm B, Strauss U, Nadobny J, Zschaeck S, Beck M, Stein U, Ghadjar P. Non-thermal effects of radiofrequency electromagnetic fields. Sci Rep. 2020;10(1):13488. PubMed, PubMedCentral, CrossRef
- Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang CT, Ramaker R, Absher D, Myers RM, Kuster N, Costa FP, Barbault A, Pasche B. Cancer cell proliferation is inhibited by specific modulation frequencies. Br J Cancer. 2012;106(2):307-313. PubMed, PubMedCentral, CrossRef
- Sharma S, Wu SY, Jimenez H, Xing F, Zhu D, Liu Y, Wu K, Tyagi A, Zhao D, Lo HW, Metheny-Barlow L, Sun P, Bourland JD, Chan MD, Thomas A, Barbault A, D’Agostino RB, Whitlow CT, Kirchner V, Blackman C, Pasche B, Watabe K. Ca2+ and CACNA1H mediate targeted suppression of breast cancer brain metastasis by AM RF EMF. EBioMedicine. 2019;44:194-208. PubMed, PubMedCentral, CrossRef
- Jimenez H, Wang M, Zimmerman JW, Pennison MJ, Sharma S, Surratt T, Xu ZX, Brezovich I, Absher D, Myers RM, DeYoung B, Caudell DL, Chen D, Lo HW, Lin HK, Godwin DW, Olivier M, Ghanekar A, Chen K, Miller LD, Gong Y, Capstick M, D’Agostino RB Jr, Munden R, Merle P, Barbault A, Blackstock AW, Bonkovsky HL, Yang GY, Jin G, Liu L, Zhang W, Watabe K, Blackman CF, Pasche BC. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca2+ influx. EBioMedicine. 2019;44:209-224. PubMed, PubMedCentral, CrossRef
- Costa FP, de Oliveira AC, Meirelles R, Machado MC, Zanesco T, Surjan R, Chammas MC, de Souza Rocha M, Morgan D, Cantor A, Zimmerman J, Brezovich I, Kuster N, Barbault A, Pasche B. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br J Cancer. 2011;105(5):640-648. PubMed, PubMedCentral, CrossRef
- Pilla AA. Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem Biophys Res Commun. 2012;426(3):330-333. PubMed, CrossRef
- Kubat NJ, Moffett J, Fray LM. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. J Inflamm Res. 2015;8:59-69. PubMed, PubMedCentral, CrossRef
- Buttiglione M, Roca L, Montemurno E, Vitiello F, Capozzi V, Cibelli G. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J Cell Physiol. 2007;213(3):759-767. PubMed, CrossRef
- Merola P, Marino C, Lovisolo GA, Pinto R, Laconi C, Negroni A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics. 2006;27(3):164-171. PubMed, CrossRef
- von Niederhäusern N, Ducray A, Zielinski J, Murbach M, Mevissen M. Effects of radiofrequency electromagnetic field exposure on neuronal differentiation and mitochondrial function in SH-SY5Y cells. Toxicol In Vitro. 2019;61:104609. PubMed, CrossRef
- Zielinski J, Ducray AD, Moeller AM, Murbach M, Kuster N, Mevissen M. Effects of pulse-modulated radiofrequency magnetic field (RF-EMF) exposure on apoptosis, autophagy, oxidative stress and electron chain transport function in human neuroblastoma and murine microglial cells. Toxicol In Vitro. 2020;68:104963. PubMed, CrossRef
- Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, Lagroye I, Haro E, Trillo MA, Capri M, Franceschi C, Schlatterer K, Gminski R, Fitzner R, Tauber R, Schuderer J, Kuster N, Leszczynski D, Bersani F, Maercker C. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics. 2006;6(17):4745-4754. PubMed, CrossRef
- Marinelli F, La Sala D, Cicciotti G, Cattini L, Trimarchi C, Putti S, Zamparelli A, Giuliani L, Tomassetti G, Cinti C. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J Cell Physiol. 2004;198(2):324-332. PubMed, CrossRef
- Lim HB, Cook GG, Barker AT, Coulton LA. Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes. Radiat Res. 2005;163(1):45-52. PubMed, CrossRef
- Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci. 2014;15(4):5366-5387. PubMed, PubMedCentral, CrossRef
- Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics. 2006;6(17):4769-4780. PubMed, CrossRef
- Leszczynski D, Joenväärä S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002;70(2-3):120-129. PubMed, CrossRef
- Schmid MR, Loughran SP, Regel SJ, Murbach M, Bratic Grunauer A, Rusterholz T, Bersagliere A, Kuster N, Achermann P. Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields. J Sleep Res. 2012;21(1):50-58. PubMed, CrossRef
- Bourthoumieu S, Terro F, Leveque P, Collin A, Joubert V, Yardin C. Aneuploidy studies in human cells exposed in vitro to GSM-900 MHz radiofrequency radiation using FISH. Int J Radiat Biol. 2011;87(4):400-408. PubMed, CrossRef
- Mashevich M, Folkman D, Kesar A, Barbul A, Korenstein R, Jerby E, Avivi L. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics. 2003;24(2):82-90. PubMed, CrossRef
- Tsoy A, Saliev T, Abzhanova E, Turgambayeva A, Kaiyrlykyzy A, Akishev M, Saparbayev S, Umbayev B, Askarova S. The effects of mobile phone radiofrequency electromagnetic fields on β-amyloid-induced oxidative stress in human and rat primary astrocytes. Neuroscience. 2019;408:46-57. PubMed, CrossRef
- Perez FP, Maloney B, Chopra N, Morisaki JJ, Lahiri DK. Repeated electromagnetic field stimulation lowers amyloid-β peptide levels in primary human mixed brain tissue cultures. Sci Rep. 2021;11(1):621. PubMed, PubMedCentral, CrossRef
- Dutta SK, Ghosh B, Blackman CF. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture. Bioelectromagnetics. 1989;10(2):197-202. PubMed, CrossRef
- Vojisavljevic V, Pirogova E, Cosic I. Low intensity microwave radiation as modulator of the L-lactate dehydrogenase activity. Med Biol Eng Comput. 2011;49(7):793-799. PubMed, CrossRef
- Sahu S, Ghosh S, Fujita D, Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci Rep. 2014;4:7303. PubMed, PubMedCentral, CrossRef
- Müllegger S, Das AK, Mayr K, Koch R. Radio-frequency excitation of single molecules by scanning tunnelling microscopy. Nanotechnology. 2014;25(13):135705. PubMed, CrossRef
- Caraglia M, Marra M, Mancinelli F, D’Ambrosio G, Massa R, Giordano A, Budillon A, Abbruzzese A, Bismuto E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol. 2005;204(2):539-548. PubMed, CrossRef
- Stefi AL, Margaritis LH, Skouroliakou AS, Vassilacopoulou D. Mobile phone electromagnetic radiation affects Amyloid Precursor Protein and α-synuclein metabolism in SH-SY5Y cells. Pathophysiology. 2019;26(3-4):203-212. PubMed, CrossRef
- Su L, Wei X, Xu Z, Chen G. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics. 2017;38(3):175-185. PubMed, CrossRef
- Tuysuz MZ, Kayhan H, Saglam ASY, Senturk F, Bagriacik EU, Yagci M, Canseven AG. Radiofrequency Induced Time-Dependent Alterations in Gene Expression and Apoptosis in Glioblastoma Cell Line. Bioelectromagnetics. 2025;46(1):e22543. PubMed, CrossRef
- Nowak-Terpiłowska A, Górski R, Marszałek M, Wosiński S, Przesmycki R, Bugaj M, Nowosielski L, Baranowski M, Zeyland J. Effects of 2.4 GHz radiofrequency electromagnetic field (RF-EMF) on glioblastoma cells (U -118 MG). Ann Agric Environ Med. 2023;30(4):763-772. PubMed, CrossRef
- Gökçen S, Kurt B, Küçükbağrıaçık Y, Ozgur-Buyukatalay E, Kismali G. Effects of radiofrequency radiation on apoptotic and antiapoptotic factors in colorectal cancer cells. Electromagn Biol Med. 2022;41(3):325-334. PubMed, CrossRef
- Komoshvili K, Israel K, Levitan J, Yahalom A, Barbora A, Liberman-Aronov L. W-band millimeter waves targeted mortality of H1299 human lung cancer cells without affecting non tumorigenic MCF-10A human epithelial cells in vitro. Applied Sciences. 2020;10(14):4813. CrossRef
- Asano M, Sakaguchi M, Tanaka S, Kashimura K, Mitani T, Kawase M, Matsumura H, Yamaguchi T, Fujita Y, Tabuse K. Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator. Sci Rep. 2017;7:41244. PubMed, PubMedCentral, CrossRef
- Lee S, Johnson D, Dunbar K, Dong H, Ge X, Kim YC, Wing C, Jayathilaka N, Emmanuel N, Zhou CQ, Gerber HL, Tseng CC, Wang SM. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 2005;579(21):4829-4836. PubMed, CrossRef
- Le Quément C, Nicolas Nicolaz C, Zhadobov M, Desmots F, Sauleau R, Aubry M, Michel D, Le Dréan Y. Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics. 2012;33(2):147-158. PubMed, CrossRef
- Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci. 2020;21(19):7069. PubMed, PubMedCentral, CrossRef
- De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446. PubMed, PubMedCentral, CrossRef
- Ding SS, Sun P, Zhang Z, Liu X, Tian H, Huo YW, Wang LR, Han Y, Xing JP. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage. Chin Med J (Engl). 2018;131(4):402-412. PubMed, PubMedCentral, CrossRef
- Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 2006;602(1-2):135-142. PubMed, CrossRef
- Schwarz C, Kratochvil E, Pilger A, Kuster N, Adlkofer F, Rüdiger HW. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health. 2008;81(6):755-767. PubMed, CrossRef
- d’Ambrosio G, Massa R, Scarfi MR, Zeni O. Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics. 2002;23(1):7-13. PubMed, CrossRef
- Lantow M, Viergutz T, Weiss DG, Simkó M. Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation. Radiat Res. 2006;166(3):539-543. PubMed, CrossRef
- Franchini V, Regalbuto E, De Amicis A, De Sanctis S, Di Cristofaro S, Coluzzi E, Marinaccio J, Sgura A, Ceccuzzi S, Doria A, Gallerano GP, Giovenale E, Ravera GL, Bei R, Benvenuto M, Modesti A, Masuelli L, Lista F. Genotoxic Effects in Human Fibroblasts Exposed to Microwave Radiation. Health Phys. 2018;115(1):126-139. PubMed, CrossRef
- Chen C, Ma Q, Liu C, Deng P, Zhu G, Zhang L, He M, Lu Y, Duan W, Pei L, Li M, Yu Z, Zhou Z. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci Rep. 2014;4:5103. PubMed, PubMedCentral, CrossRef
- Peinnequin A, Piriou A, Mathieu J, Dabouis V, Sebbah C, Malabiau R, Debouzy JC. Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochemistry. 2000;51(2):157-161. PubMed, CrossRef
- Cios A, Cieplak M, Szymański Ł, Lewicka A, Cierniak S, Stankiewicz W, Mendrycka M, Lewicki S. Effect of Different Wavelengths of Laser Irradiation on the Skin Cells. Int J Mol Sci. 2021;22(5):2437. PubMed, PubMedCentral, CrossRef
- Cheon H, Paik JH, Choi M, Yang HJ, Son JH. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci Rep. 2019;9(1):6413. PubMed, PubMedCentral, CrossRef
- Cheon H, Yang HJ, Lee SH, Kim YA, Son JH. Terahertz molecular resonance of cancer DNA. Sci Rep. 2016;6:37103. PubMed, PubMedCentral, CrossRef
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. PubMed, PubMedCentral, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







