Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 5-22

doi: https://doi.org/10.15407/ubj97.06.005

Human cells response to electromagnetic waves of radio and microwave frequencies

S. Souchelnytskyi

Oranta CancerDiagnostics AB, Uppsala, Sweden;
e-mail: serhiy8085@gmail.com

Received: 23 June 2025; Revised: 17 August 2025;
Accepted: 28 November 2025; Available on-line: 23 December 2025

Human cells both generate and absorb electromagnetic waves (EMW), but information about sensing and responding to EMW at different Hz frequencies is still fragmentary. The reported impact of radio (RF) and microwave (MW) frequencies is variable, from harmful to human health to applications promising for novel diagnostics and treatment of diseases, e.g., cancer. The review highlights both recent achievements in elucidation of molecular mechanisms of RF and MW effects and a direction for their successful practical application in humans.

Keywords: , , , , , ,


References:

  1. Radiation: Electromagnetic fields. Radiation and health (RAD), World Health Organization, 4 August 2016. https://www.who.int/news-room/questions-and-answers/item/radiation-electromagnetic-fields. Accessed April 6, 2025. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/power-density-(w-m-)
  2. Lipkova JJ, Cechak J. Human electromagnetic emission in the ELF band. Measurement Sci Rev. 2005; 5(2): 29-32.
  3. Brazdzionis J, Wiginton J 4th, Patchana T, Savla P, Hung J, Zhang Y, Miulli DE. Measuring the Electromagnetic Field of the Human Brain at a Distance Using a Shielded Electromagnetic Field Channel. Cureus. 2022;14(3):e23626. PubMed, PubMedCentral, CrossRef
  4. Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28(1):51. PubMed, PubMedCentral, CrossRef
  5. Tuszynski JA, Costa F. Low-energy amplitude-modulated radiofrequency electromagnetic fields as a systemic treatment for cancer: Review and proposed mechanisms of action. Front Med Technol. 2022;4:869155. PubMed, PubMedCentral, CrossRef
  6. Fraser A, Frey AH. Electromagnetic emission at micron wavelengths from active nerves. Biophys J. 1968;8(6):731-734. PubMed, PubMedCentral, CrossRef
  7. Zapata F, Pastor-Ruiz V, Ortega-Ojeda F, Montalvo G, Ruiz-Zolle AV, García-Ruiz C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states – A review. J Photochem Photobiol B. 2021;216:112141. PubMed, CrossRef
  8. Tsuchida K, Iwasa T, Kobayashi M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin. J Photochem Photobiol B. 2019;198:111562. PubMed, CrossRef
  9. Scholkmann F, Fels D, Cifra M. Non-chemical and non-contact cell-to-cell communication: a short review. Am J Transl Res. 2013;5(6):586-593. PubMed, PubMedCentral
  10. Crocetti S, Beyer C, Schade G, Egli M, Fröhlich J, Franco-Obregón A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One. 2013;8(9):e72944. PubMed, PubMedCentral, CrossRef
  11. Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS One. 2015;10(4):e0124136. PubMed, PubMedCentral, CrossRef
  12. Sadeghipour R, Ahmadian S, Bolouri B, Pazhang Y, Shafiezadeh M. Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D). Electromagn Biol Med. 2012;31(4):425-435. PubMed, CrossRef
  13. Franco-Obregón A. Harmonizing magnetic mitohormetic regenerative strategies: developmental implications of a calcium-mitochondrial axis invoked by magnetic field exposure. Bioengineering (Basel). 2023;10(10):1176. PubMed, PubMedCentral, CrossRef
  14. Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief magnetic field exposure stimulates doxorubicin uptake into breast cancer cells in association with TRPC1 expression: a precision oncology methodology to enhance chemotherapeutic outcome. Cancers (Basel). 2024;16(22):3860. PubMed, PubMedCentral, CrossRef
  15. Pasi F, Fassina L, Mognaschi ME, Lupo G, Corbella F, Nano R, Capelli E. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells. Anticancer Res. 2016;36(11):5821-5826. PubMed, CrossRef
  16. Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Borea PA, Varani K. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PLoS One. 2012;7(6):e39317. PubMed, PubMedCentral, CrossRef
  17. Ledda M, Megiorni F, Pozzi D, Giuliani L, D’Emilia E, Piccirillo S, Mattei C, Grimaldi S, Lisi A. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR “In Vitro” effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. PLoS One. 2013;8(4):e61535. PubMed, PubMedCentral, CrossRef
  18. Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani SN, Dini L, Darvishzadeh-Mahani F, Ahmadi M. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn Biol Med. 2017;36(3):238-247. PubMed, CrossRef
  19. Cios A, Ciepielak M, Lieto K, Matak D, Lewicki S, Palusińska M, Stankiewicz W, Szymański Ł. Extremely low-frequency electromagnetic field (ELF-EMF) induced alterations in gene expression and cytokine secretion in clear cell renal carcinoma cells. Med Pr. 2024;75(2):133-141. PubMed, CrossRef
  20. Merighi S, Nigro M, Travagli A, Fernandez M, Vincenzi F, Varani K, Pasquini S, Borea PA, Salati S, Cadossi R, Gessi S. Effect of Low-Frequency, Low-Energy Pulsed Electromagnetic Fields in Neuronal and Microglial Cells Injured with Amyloid-Beta. Int J Mol Sci. 2024;25(23):12847. PubMed, PubMedCentral, CrossRef
  21. Reale M, Kamal MA, Patruno A, Costantini E, D’Angelo C, Pesce M, Greig NH. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS One. 2014;9(8):e104973. PubMed, PubMedCentral, CrossRef
  22. World Health Organization Environmental Health Criteria 137. Electromagnetic Fields (300 Hz-300 GHz). 1993, Geneva, Switzerland: WHO. https://iris.who.int/bitstream/handle/10665/37112/WHO_EHC_137_eng.pdf, Accessed April 20, 2025.
  23. Kursawe M, Stunder D, Krampert T, Kaifie A, Drießen S, Kraus T, Jankowiak K. Human detection thresholds of DC, AC, and hybrid electric fields: a double-blind study. Environ Health. 2021;20(1):92. PubMed, PubMedCentral, CrossRef
  24. Blondin JP, Nguyen DH, Sbeghen J, Goulet D, Cardinal C, Maruvada PS, Plante M, Bailey WH. Human perception of electric fields and ion currents associated with high-voltage DC transmission lines. Bioelectromagnetics. 1996;17(3):230-241. CrossRef
  25. Lövsund P, Oberg PA, Nilsson SE, Reuter T. Magnetophosphenes: a quantitative analysis of thresholds. Med Biol Eng Comput. 1980;18(3):326-334. PubMed, CrossRef
  26. Lisi A, Foletti A, Ledda M, Rosola E, Giuliani L, D’Emilia E, Grimaldi S. Extremely low frequency 7 Hz 100 microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT. Electromagn Biol Med. 2006;25(4):269-280. PubMed, CrossRef
  27. Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, Sacco D, D’Emilia E, Grimaldi S. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics. 2004;25(2):118-126. PubMed, CrossRef
  28. Bedja-Iacona L, Scorretti R, Ducrot M, Vollaire C, Franqueville L. Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase. Bioelectromagnetics. 2024;45(6):293-309. PubMed, CrossRef
  29. Yang C, Xu L, Liao F, Liao C, Zhao Y, Chen Y, Yu Q, Peng B, Liu H. Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis. Sci Rep. 2024;14(1):19027. PubMed, PubMedCentral, CrossRef
  30. Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 2002;7(1):18-23. PubMed, CrossRef
  31. Wang MH, Jian MW, Tai YH, Jang LS, Chen CH. Inhibition of B16F10 Cancer Cell Growth by Exposure to the Square Wave with 7.83+/-0.3Hz Involves L- and T-Type Calcium Channels. Electromagn Biol Med. 2021;40(1):150-157. PubMed, CrossRef
  32. Cai W, Xiao Y, Yan J, Peng H, Tu C. EMF treatment delays mesenchymal stem cells senescence during long-term in vitro expansion by modulating autophagy. Front Cell Dev Biol. 2024;12:1489774. PubMed, PubMedCentral, CrossRef
  33. Song K, Hu J, Yang M, Xia Y, He C, Yang Y, Zhu S. Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway. J Transl Med. 2024;22(1):741. PubMed, PubMedCentral, CrossRef
  34. Gualdi G, Costantini E, Reale M, Amerio P. Wound repair and extremely low frequency-electromagnetic field: insight from in vitro study and potential clinical application. Int J Mol Sci. 2021;22(9):5037. PubMed, PubMedCentral, CrossRef
  35. Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG, Ferrari D, Imbriani M, Visai L. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access. 2013;2(4):283-294. PubMed, PubMedCentral, CrossRef
  36. Liu X, Zhao L, Yu D, Ma S, Liu X. Effects of extremely low frequency electromagnetic field on the health of workers in automotive industry. Electromagn Biol Med. 2013;32(4):551-559. PubMed, CrossRef
  37. Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone regeneration revolution: pulsed electromagnetic field modulates macrophage-derived exosomes to attenuate osteoclastogenesis. Int J Nanomedicine. 2024;19:8695-8707. PubMed, PubMedCentral, CrossRef
  38. Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS therapy on the expression of genes related to peripheral nerve regeneration in schwann cells. Int J Mol Sci. 2024;25(23):12791. PubMed, PubMedCentral, CrossRef
  39. Liao F, Li Y, Zhang Z, Yu Q, Liu H. Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study. BMC Complement Med Ther. 2025;25(1):50. PubMed, PubMedCentral, CrossRef
  40. Wasak A, Drozd R, Jankowiak D, Rakoczy R. Rotating magnetic field as tool for enhancing enzymes properties – laccase case study. Sci Rep. 2019;9(1):3707. PubMed, PubMedCentral, CrossRef
  41. Portaccio M, De Luca P, Durante D, Grano V, Rossi S, Bencivenga U, Lepore M, Mita DG. Modulation of the catalytic activity of free and immobilized peroxidase by extremely low frequency electromagnetic fields: dependence on frequency. Bioelectromagnetics. 2005;26(2):145-52. PubMed, CrossRef
  42. Caliga R, Maniu CL, Mihasan M. ELF-EMF exposure decreases the peroxidase catalytic efficiency in vitro. Open Life Sci. 2016;11(1):71-77. CrossRef
  43. Morelli A, Ravera S, Panfoli I, Pepe IM. Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch Biochem Biophys. 2005;441(2):191-198. PubMed, CrossRef
  44. Teranishi M, Ito M, Huang Z, Nishiyama Y, Masuda A, Mino H, Tachibana M, Inada T, Ohno K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int J Mol Sci. 2024;25(20):11315. PubMed, PubMedCentral, CrossRef
  45. Wu H, Yang L, Liu H, Zhou D, Chen D, Zheng X, Yang H, Li C, Chang J, Wu A, Wang Z, Ren N, Lv S, Liu Y, Jia M, Lu J, Liu H, Sun G, Liu Z, Liu J, Chen L. Exploring the efficacy of tumor electric field therapy against glioblastoma: An in vivo and in vitro study. CNS Neurosci Ther. 2021;27(12):1587-1604. PubMed, PubMedCentral, CrossRef
  46. Beneduci A, Chidichimo G, Tripepi S, Perrotta E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res. 2005;25(2A):1009-1013. PubMed
  47. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288-3295. PubMed, CrossRef
  48. Kirson ED, Dbalý V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, Mordechovich D, Steinberg-Shapira S, Gurvich Z, Schneiderman R, Wasserman Y, Salzberg M, Ryffel B, Goldsher D, Dekel E, Palti Y. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA. 2007;104(24):10152-10157. PubMed, PubMedCentral, CrossRef
  49. Jones TH, Song JW, Abushahin L. Tumor treating fields: An emerging treatment modality for thoracic and abdominal cavity cancers. Transl Oncol. 2022;15(1):101296. PubMed, PubMedCentral, CrossRef
  50. Riegel DC, Bureau BL, Conlon P, Chavez G, Connelly JM. Long-term survival, patterns of progression, and patterns of use for patients with newly diagnosed glioblastoma treated with or without Tumor Treating Fields (TTFields) in a real-world setting. J Neurooncol. 2025;173(1):49-57. PubMed, PubMedCentral, CrossRef
  51. Curley SA, Palalon F, Lu X, Koshkina NV. Noninvasive radiofrequency treatment effect on mitochondria in pancreatic cancer cells. Cancer. 2014;120(21):3418-3425. PubMed, PubMedCentral, CrossRef
  52. Ware MJ, Tinger S, Colbert KL, Corr SJ, Rees P, Koshkina N, Curley S, Summers HD, Godin B. Radiofrequency treatment alters cancer cell phenotype. Sci Rep. 2015;5:12083. PubMed, PubMedCentral, CrossRef
  53. Wust P, Veltsista PD, Oberacker E, Yavvari P, Walther W, Bengtsson O, Sterner-Kock A, Weinhart M, Heyd F, Grabowski P, Stintzing S, Heinrich W, Stein U, Ghadjar P. Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells. Cancers (Basel). 2022;14(21):5349. PubMed, PubMedCentral, CrossRef
  54. Wust P, Kortüm B, Strauss U, Nadobny J, Zschaeck S, Beck M, Stein U, Ghadjar P. Non-thermal effects of radiofrequency electromagnetic fields. Sci Rep. 2020;10(1):13488. PubMed, PubMedCentral, CrossRef
  55. Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang CT, Ramaker R, Absher D, Myers RM, Kuster N, Costa FP, Barbault A, Pasche B. Cancer cell proliferation is inhibited by specific modulation frequencies. Br J Cancer. 2012;106(2):307-313. PubMed, PubMedCentral, CrossRef
  56. Sharma S, Wu SY, Jimenez H, Xing F, Zhu D, Liu Y, Wu K, Tyagi A, Zhao D, Lo HW, Metheny-Barlow L, Sun P, Bourland JD, Chan MD, Thomas A, Barbault A, D’Agostino RB, Whitlow CT, Kirchner V, Blackman C, Pasche B, Watabe K. Ca2+ and CACNA1H mediate targeted suppression of breast cancer brain metastasis by AM RF EMF. EBioMedicine. 2019;44:194-208. PubMed, PubMedCentral, CrossRef
  57. Jimenez H, Wang M, Zimmerman JW, Pennison MJ, Sharma S, Surratt T, Xu ZX, Brezovich I, Absher D, Myers RM, DeYoung B, Caudell DL, Chen D, Lo HW, Lin HK, Godwin DW, Olivier M, Ghanekar A, Chen K, Miller LD, Gong Y, Capstick M, D’Agostino RB Jr, Munden R, Merle P, Barbault A, Blackstock AW, Bonkovsky HL, Yang GY, Jin G, Liu L, Zhang W, Watabe K, Blackman CF, Pasche BC. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca2+ influx. EBioMedicine. 2019;44:209-224. PubMed, PubMedCentral, CrossRef
  58. Costa FP, de Oliveira AC, Meirelles R, Machado MC, Zanesco T, Surjan R, Chammas MC, de Souza Rocha M, Morgan D, Cantor A, Zimmerman J, Brezovich I, Kuster N, Barbault A, Pasche B. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br J Cancer. 2011;105(5):640-648. PubMed, PubMedCentral, CrossRef
  59. Pilla AA. Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem Biophys Res Commun. 2012;426(3):330-333. PubMed, CrossRef
  60. Kubat NJ, Moffett J, Fray LM. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. J Inflamm Res. 2015;8:59-69. PubMed, PubMedCentral, CrossRef
  61. Buttiglione M, Roca L, Montemurno E, Vitiello F, Capozzi V, Cibelli G. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J Cell Physiol. 2007;213(3):759-767. PubMed, CrossRef
  62. Merola P, Marino C, Lovisolo GA, Pinto R, Laconi C, Negroni A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics. 2006;27(3):164-171. PubMed, CrossRef
  63. von Niederhäusern N, Ducray A, Zielinski J, Murbach M, Mevissen M. Effects of radiofrequency electromagnetic field exposure on neuronal differentiation and mitochondrial function in SH-SY5Y cells. Toxicol In Vitro. 2019;61:104609. PubMed, CrossRef
  64. Zielinski J, Ducray AD, Moeller AM, Murbach M, Kuster N, Mevissen M. Effects of pulse-modulated radiofrequency magnetic field (RF-EMF) exposure on apoptosis, autophagy, oxidative stress and electron chain transport function in human neuroblastoma and murine microglial cells. Toxicol In Vitro. 2020;68:104963. PubMed, CrossRef
  65. Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, Lagroye I, Haro E, Trillo MA, Capri M, Franceschi C, Schlatterer K, Gminski R, Fitzner R, Tauber R, Schuderer J, Kuster N, Leszczynski D, Bersani F, Maercker C. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics. 2006;6(17):4745-4754. PubMed, CrossRef
  66. Marinelli F, La Sala D, Cicciotti G, Cattini L, Trimarchi C, Putti S, Zamparelli A, Giuliani L, Tomassetti G, Cinti C. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J Cell Physiol. 2004;198(2):324-332. PubMed, CrossRef
  67. Lim HB, Cook GG, Barker AT, Coulton LA. Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes. Radiat Res. 2005;163(1):45-52. PubMed, CrossRef
  68. Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci. 2014;15(4):5366-5387. PubMed, PubMedCentral, CrossRef
  69. Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics. 2006;6(17):4769-4780. PubMed, CrossRef
  70. Leszczynski D, Joenväärä S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002;70(2-3):120-129. PubMed, CrossRef
  71. Schmid MR, Loughran SP, Regel SJ, Murbach M, Bratic Grunauer A, Rusterholz T, Bersagliere A, Kuster N, Achermann P. Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields. J Sleep Res. 2012;21(1):50-58. PubMed, CrossRef
  72. Bourthoumieu S, Terro F, Leveque P, Collin A, Joubert V, Yardin C. Aneuploidy studies in human cells exposed in vitro to GSM-900 MHz radiofrequency radiation using FISH. Int J Radiat Biol. 2011;87(4):400-408. PubMed, CrossRef
  73. Mashevich M, Folkman D, Kesar A, Barbul A, Korenstein R, Jerby E, Avivi L. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics. 2003;24(2):82-90. PubMed, CrossRef
  74. Tsoy A, Saliev T, Abzhanova E, Turgambayeva A, Kaiyrlykyzy A, Akishev M, Saparbayev S, Umbayev B, Askarova S. The effects of mobile phone radiofrequency electromagnetic fields on β-amyloid-induced oxidative stress in human and rat primary astrocytes. Neuroscience. 2019;408:46-57. PubMed, CrossRef
  75. Perez FP, Maloney B, Chopra N, Morisaki JJ, Lahiri DK. Repeated electromagnetic field stimulation lowers amyloid-β peptide levels in primary human mixed brain tissue cultures. Sci Rep. 2021;11(1):621. PubMed, PubMedCentral, CrossRef
  76. Dutta SK, Ghosh B, Blackman CF. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture. Bioelectromagnetics. 1989;10(2):197-202. PubMed, CrossRef
  77. Vojisavljevic V, Pirogova E, Cosic I. Low intensity microwave radiation as modulator of the L-lactate dehydrogenase activity. Med Biol Eng Comput. 2011;49(7):793-799. PubMed, CrossRef
  78. Sahu S, Ghosh S, Fujita D, Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci Rep. 2014;4:7303. PubMed, PubMedCentral, CrossRef
  79. Müllegger S, Das AK, Mayr K, Koch R. Radio-frequency excitation of single molecules by scanning tunnelling microscopy. Nanotechnology. 2014;25(13):135705. PubMed, CrossRef
  80. Caraglia M, Marra M, Mancinelli F, D’Ambrosio G, Massa R, Giordano A, Budillon A, Abbruzzese A, Bismuto E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol. 2005;204(2):539-548. PubMed, CrossRef
  81. Stefi AL, Margaritis LH, Skouroliakou AS, Vassilacopoulou D. Mobile phone electromagnetic radiation affects Amyloid Precursor Protein and α-synuclein metabolism in SH-SY5Y cells. Pathophysiology. 2019;26(3-4):203-212. PubMed, CrossRef
  82. Su L, Wei X, Xu Z, Chen G. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics. 2017;38(3):175-185. PubMed, CrossRef
  83. Tuysuz MZ, Kayhan H, Saglam ASY, Senturk F, Bagriacik EU, Yagci M, Canseven AG. Radiofrequency Induced Time-Dependent Alterations in Gene Expression and Apoptosis in Glioblastoma Cell Line. Bioelectromagnetics. 2025;46(1):e22543. PubMed, CrossRef
  84. Nowak-Terpiłowska A, Górski R, Marszałek M, Wosiński S, Przesmycki R, Bugaj M, Nowosielski L, Baranowski M, Zeyland J. Effects of 2.4 GHz radiofrequency electromagnetic field (RF-EMF) on glioblastoma cells (U -118 MG). Ann Agric Environ Med. 2023;30(4):763-772. PubMed, CrossRef
  85. Gökçen S, Kurt B, Küçükbağrıaçık Y, Ozgur-Buyukatalay E, Kismali G. Effects of radiofrequency radiation on apoptotic and antiapoptotic factors in colorectal cancer cells. Electromagn Biol Med. 2022;41(3):325-334. PubMed, CrossRef
  86. Komoshvili K, Israel K, Levitan J, Yahalom A, Barbora A, Liberman-Aronov L. W-band millimeter waves targeted mortality of H1299 human lung cancer cells without affecting non tumorigenic MCF-10A human epithelial cells in vitro. Applied Sciences. 2020;10(14):4813. CrossRef
  87. Asano M, Sakaguchi M, Tanaka S, Kashimura K, Mitani T, Kawase M, Matsumura H, Yamaguchi T, Fujita Y, Tabuse K. Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator. Sci Rep. 2017;7:41244. PubMed, PubMedCentral, CrossRef
  88. Lee S, Johnson D, Dunbar K, Dong H, Ge X, Kim YC, Wing C, Jayathilaka N, Emmanuel N, Zhou CQ, Gerber HL, Tseng CC, Wang SM. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 2005;579(21):4829-4836. PubMed, CrossRef
  89. Le Quément C, Nicolas Nicolaz C, Zhadobov M, Desmots F, Sauleau R, Aubry M, Michel D, Le Dréan Y. Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics. 2012;33(2):147-158. PubMed, CrossRef
  90. Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci. 2020;21(19):7069. PubMed, PubMedCentral, CrossRef
  91. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446. PubMed, PubMedCentral, CrossRef
  92. Ding SS, Sun P, Zhang Z, Liu X, Tian H, Huo YW, Wang LR, Han Y, Xing JP. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage. Chin Med J (Engl). 2018;131(4):402-412. PubMed, PubMedCentral, CrossRef
  93. Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 2006;602(1-2):135-142. PubMed, CrossRef
  94. Schwarz C, Kratochvil E, Pilger A, Kuster N, Adlkofer F, Rüdiger HW. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health. 2008;81(6):755-767. PubMed, CrossRef
  95.  d’Ambrosio G, Massa R, Scarfi MR, Zeni O. Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics. 2002;23(1):7-13. PubMed, CrossRef
  96. Lantow M, Viergutz T, Weiss DG, Simkó M. Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation. Radiat Res. 2006;166(3):539-543. PubMed, CrossRef
  97. Franchini V, Regalbuto E, De Amicis A, De Sanctis S, Di Cristofaro S, Coluzzi E, Marinaccio J, Sgura A, Ceccuzzi S, Doria A, Gallerano GP, Giovenale E, Ravera GL, Bei R, Benvenuto M, Modesti A, Masuelli L, Lista F. Genotoxic Effects in Human Fibroblasts Exposed to Microwave Radiation. Health Phys. 2018;115(1):126-139. PubMed, CrossRef
  98. Chen C, Ma Q, Liu C, Deng P, Zhu G, Zhang L, He M, Lu Y, Duan W, Pei L, Li M, Yu Z, Zhou Z. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci Rep. 2014;4:5103. PubMed, PubMedCentral, CrossRef
  99. Peinnequin A, Piriou A, Mathieu J, Dabouis V, Sebbah C, Malabiau R, Debouzy JC. Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochemistry. 2000;51(2):157-161. PubMed, CrossRef
  100. Cios A, Cieplak M, Szymański Ł, Lewicka A, Cierniak S, Stankiewicz W, Mendrycka M, Lewicki S. Effect of Different Wavelengths of Laser Irradiation on the Skin Cells. Int J Mol Sci. 2021;22(5):2437. PubMed, PubMedCentral, CrossRef
  101. Cheon H, Paik JH, Choi M, Yang HJ, Son JH. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci Rep. 2019;9(1):6413. PubMed, PubMedCentral, CrossRef
  102. Cheon H, Yang HJ, Lee SH, Kim YA, Son JH. Terahertz molecular resonance of cancer DNA. Sci Rep. 2016;6:37103. PubMed, PubMedCentral, CrossRef
  103. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.