Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 23-32
doi: https://doi.org/10.15407/ubj97.06.023
Identification of different subtypes of K(+) channels in the mitochondria of rat myometrium using K(+) channels modulators
M. V. Rudnytska, H. V. Danylovych*, M. R. Pavliuk, Yu. V. Danylovych
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: danylovychanna@ukr.net
Received: 17 July 2025; Revised: 25 September 2025;
Accepted: 28 November 2025; Available on-line: 23 December 2025
Potassium ions affect Ca2+ transport in mitochondria, the magnitude of the electric potential on the inner mitochondrial membrane, metabolic processes in the matrix, and osmoregulation. The aim of this study was to identify different subtypes of K+ channels in the mitochondria of rat myometrium. Isolated mitochondria were obtained from the myometrium of non-pregnant Wistar rats by differential centrifugation. Potassium ion accumulation was studied by spectrofluorimetry using the K+-sensitive fluorescent probe PBFI-AM. Myometrial mitochondria effectively accumulate potassium ions within the concentration range of 25–150 mM. No increase in PBFI fluorescence was observed when K+ ions were replaced by choline in equimolar concentrations. In the presence of voltage-operated K+ channels inhibitor 4-aminopyridine, Ca2+-dependent K+ channels blockers charybdotoxin or paxilline, mitoKATP channels inhibitors glibenclamide, 5-hydroxydecanoic acid, or 200 μM ATP, a significant decrease in the PBFI fluorescence signal was observed. Conversely, application of Ca2+-dependent K+ channels specific activators NS11021 and NS1619, as well as of mitoKATP-specific activator cromakalim, resulted in increased mitochondrial K+ accumulation. The efficiency of K+ uptake increased further with the addition of 25–100 μM Ca²⁺ in the presence of 4-aminopyridine and ATP. The results obtained indicate the presence of voltage-operated and Ca2+-dependent subtypes of K+ channels, as well as of H+/K+ exchange system in myometrial mitochondria in addition to mitoKATP channels.
Keywords: calcium, K+ channels modulators, mitochondria, potassium ions accumulation, rat myometrium
References:
- Laskowski M, Augustynek B, Kulawiak B, Koprowski P, Bednarczyk P, Jarmuszkiewicz W, Szewczyk A. What do we not know about mitochondrial potassium channels? Biochim Biophys Acta. 2016;1857(8):1247-1257. PubMed, CrossRef
- Killilea DW, Killilea AN. Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation. Free Radic Biol Med. 2022;182:182-191. PubMed, PubMedCentral, CrossRef
- Naima J, Ohta Y. Potassium Ions Decrease Mitochondrial Matrix pH: Implications for ATP Production and Reactive Oxygen Species Generation. Int J Mol Sci. 2024;25(2):1233. PubMed, PubMedCentral, CrossRef
- Rotko D, Kunz WS, Szewczyk A, Kulawiak B. Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol. 2020;125:105792. PubMed, CrossRef
- Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells. 2021;10(6):1554. PubMed, PubMedCentral, CrossRef
- Wray S, Prendergast C. The Myometrium: From Excitation to Contractions and Labour. Adv Exp Med Biol. 2019;1124:233-263. PubMed, CrossRef
- Burdyga T, Poul RJ. Chapter 86 ‒ Calcium Homeostasis and Signaling in Smooth Muscle. Muscle. 2012;2:1155-1171. CrossRef
- Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85-100. PubMed, CrossRef
- Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236-250. PubMed, PubMedCentral, CrossRef
- Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015;6:472-485. PubMed, PubMedCentral, CrossRef
- Zhang L, Zheng Y, Xie J, Shi L. Potassium channels and their emerging role in parkinson’s disease. Brain Res Bull. 2020;160:1-7. PubMed, CrossRef
- Wang CH, Wei YH. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J Biomed Sci. 2017;24(1):70. PubMed, PubMedCentral, CrossRef
- Brainard AM, Korovkina VP, England SK. Potassium channels and uterine function. Semin Cell Dev Biol. 2007;18(3):332-339. PubMed, PubMedCentral, CrossRef
- Zullino S, Buzzella F, Simoncini T. Nitric oxide and the biology of pregnancy. Vascul Pharmacol. 2018;110:71-74. PubMed, CrossRef
- Ulrich C, Quilici DR, Schlauch KA, Buxton IL. The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor. Am J Physiol Cell Physiol. 2013;305(8):C803-C816. PubMed, PubMedCentral, CrossRef
- O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;94(4):420-432. PubMed, PubMedCentral, CrossRef
- Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009;61(2):134-143. PubMed, CrossRef
- Trombetta-Lima M, Krabbendam IE, Dolga AM. Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. Int J Biochem Cell Biol. 2020;123:105748. PubMed, CrossRef
- Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta. 2003;1606(1-3):23-41. PubMed, CrossRef
- Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants (Basel). 2023;12(8):1517. PubMed, PubMedCentral, CrossRef
- Aldakkak M, Stowe DF, Cheng Q, Kwok WM, Camara AK. Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening. Am J Physiol Cell Physiol. 2010;298(3):C530-C541. PubMed, PubMedCentral, CrossRef
- Csonka C, Kupai K, Bencsik P, Görbe A, Pálóczi J, Zvara A, Puskás LG, Csont T, Ferdinandy P. Cholesterol-enriched diet inhibits cardioprotection by ATP-sensitive K+ channel activators cromakalim and diazoxide. Am J Physiol Heart Circ Physiol. 2014;306(3):H405-H413. PubMed, CrossRef
- Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD. The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006;290(1):H406-H415. PubMed, PubMedCentral, CrossRef
- Yamada M. Mitochondrial ATP-sensitive K+ channels, protectors of the heart. J Physiol. 2010;588(Pt 2):283-286. PubMed, PubMedCentral, CrossRef
- Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM. Differential distribution of Ca2+-activated potassium channel beta4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience. 2008;153(2):446-460. PubMed, CrossRef
- Gulbins E, Sassi N, Grassmè H, Zoratti M, Szabò I. Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta. 2010;1797(6-7):1251-1259. PubMed, CrossRef
- Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules. 2020;10(8):1200. PubMed, PubMedCentral, CrossRef
- Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991;352(6332):244-247. PubMed, CrossRef
- Kicinska A, Augustynek B, Kulawiak B, Jarmuszkiewicz W, Szewczyk A, Bednarczyk P. A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J. 2016;473(23):4457-4471. PubMed, CrossRef
- Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiol Rev. 2014;94(2):519-608.
PubMed, CrossRef - Kravenska Y, Checchetto V, Szabo I. Routes for Potassium Ions across Mitochondrial Membranes: A Biophysical Point of View with Special Focus on the ATP-Sensitive K+ Channel. Biomolecules. 2021;11(8):1172. PubMed, PubMedCentral, CrossRef
- Augustynek B, Kunz WS, Szewczyk A. Guide to the Pharmacology of Mitochondrial Potassium Channels. Handb Exp Pharmacol. 2017;240:103-127. PubMed, CrossRef
- Vadzyuk OB, Kosterin SO. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel. Saudi J Biol Sci. 2018;25(3):551-557. PubMed, PubMedCentral, CrossRef
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. PubMed, CrossRef
- Kasner SE, Ganz MB. Regulation of intracellular potassium in mesangial cells: a fluorescence analysis using the dye, PBFI. Am J Physiol. 1992;262(3 Pt 2):F462-F467. PubMed, CrossRef
- Garlid KD. Unmasking the mitochondrial K/H exchanger: tetraethylammonium-induced K+-loss. Biochem Biophys Res Commun. 1979;87(3):842-847. PubMed, CrossRef
- Smith RC, McClure MC, Smith MA, Abel PW, Bradley ME. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reprod Biol Endocrinol. 2007;5:41. PubMed, PubMedCentral, CrossRef
- Paggio A, Checchetto V, Campo A, Menabò R, Di Marco G, Di Lisa F, Szabo I, Rizzuto R, De Stefani D. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019;572(7771):609-613. PubMed, PubMedCentral, CrossRef
- Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol. 2015;95(4):211-226. PubMed, PubMedCentral, CrossRef
- Yang W, Cheng Z, Dai H. Calcium concentration response to uterine ischemia: a comparison of uterine fibroid cells and adjacent normal myometrial cells. Eur J Obstet Gynecol Reprod Biol. 2014;174:123-127. PubMed, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







