Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 93-104

doi: https://doi.org/10.15407/ubj97.06.093

Isolation and characterization of collagenase-active preparation from Rapana venosa salivary glands

V. A. Toptikov*, Ye. A. Shesterenko, Yu. A. Shesterenko

Medical Biotechnology and Enzymology Laboratory, Department of Biomedicine,
A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odesa;
*e-mail: v.a.toptikov@gmail.com

Received: 02 July2025; Revised: 28 August 2025;
Accepted: 28 November 2025; Available on-line:  23 December 2025

Collagenases have found practical applications in both medicine and the food industry, but the search for novel collagenase sources remains an active area of studies. Rapana, a predatory mollusk that primarily feeds on bivalves rich in connective tissue, has emerged as a potential source of collagenolytic enzymes. This study aimed to isolate collagenase-active preparation from Rapana venosa salivary glands and characterize its properties. The salivary gland extract was purified by acetone precipitation followed by ammonium sulfate treatment. Electrophoresis was performed by the Laemmli protocol under both reducing and non-reducing conditions. Proteolytic activity was determined spectrophotometrically using collagen or gelatin as a substrate. The preparation consisted of five protein fractions and exhibited enzymatic polymorphism. A 13.8-fold purification of collagenase activity was achieved, at least 22% of total proteins displayed collagenolytic activity, while 88% showed gelatinolytic activity. The optimum of preparation activity was found in acidic (pH 4.5) and alkaline (-9.5) ranges, with thermal optimum at 46°C. At room temperature, about 90% of activity was maintained for 8 h. Serine protease inhibitors did not affect enzyme activity, metal ion chelators completely inhibited it. Reducing agents enhancing SH-groups increased enzyme activity, disulfide bond regeneration or SH-group modification decreased it. The data obtained showed that the collagenase-active enzyme preparation from Rapana venosa salivary glands consists mainly of metalloproteinases and cysteine proteases, exhibiting high stability.

Keywords: , , , ,


References:

  1. Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol. 2019;14(11):2372-2388. PubMed, CrossRef
  2. Bhagwat PK, Dandge PB. Collagen and collagenolytic proteases: a review. Biocatal Agric Biotechnol. 2018;15:43-55. CrossRef
  3. Del Bigio MR, Seyoum G. Effect of matrix metalloproteinase inhibitors on rat embryo development in vitro. Cells Tissues Organs. 1999;165(2):67-73. PubMed, CrossRef
  4. Detry B, Erpicum C, Paupert J, Blacher S, Maillard C, Bruyère F, Pendeville H, Remacle T, Lambert V, Balsat C, Ormenese S, Lamaye F, Janssens E, Moons L, Cataldo D, Kridelka F, Carmeliet P, Thiry M, Foidart JM, Struman I, Noël A. Matrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase. Blood. 2012;119(21):5048-5056. PubMed, CrossRef
  5. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, López-Otín C, Krane SM. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA. 2004;101(49):17192-17197. PubMed, PubMedCentral, CrossRef
  6. Reponen P, Leivo I, Sahlberg C, Apte SS, Olsen BR, Thesleff I, Tryggvason K. 92-kDa type IV collagenase and TIMP-3, but not 72-kDa type IV collagenase or TIMP-1 or TIMP-2, are highly expressed during mouse embryo implantation. Dev Dyn. 1995;202(4):388-396. PubMed, CrossRef
  7. Stolow MA, Bauzon DD, Li J, Sedgwick T, Liang VC, Sang QA, Shi YB. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol Biol Cell. 1996;7(10):1471-1483. PubMed, PubMedCentral, CrossRef
  8. Cowan RW, Mak IW, Colterjohn N, Singh G, Ghert M. Collagenase expression and activity in the stromal cells from giant cell tumour of bone. Bone. 2009;44(5):865-871. PubMed, PubMedCentral, CrossRef
  9. Fukumoto Y, Deguchi JO, Libby P, Rabkin-Aikawa E, Sakata Y, Chin MT, Hill CC, Lawler PR, Varo N, Schoen FJ, Krane SM, Aikawa M. Genetically determined resistance to collagenase action augments interstitial collagen accumulation in atherosclerotic plaques. Circulation. 2004;110(14):1953-1959. PubMed, CrossRef
  10. Hussain AA, Lee Y, Marshall J. High molecular-weight gelatinase species of human Bruch’s membrane: compositional analyses and age-related changes. Invest Ophthalmol Vis Sci. 2010;51(5):2363-2371. PubMed, CrossRef
  11. Löffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191-208. PubMed, CrossRef
  12. Nakatani T, Partridge NC. Bone proteinases. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of Bone Biology. 3rd ed. Elsevier; 2020. p. 379-399. CrossRef
  13. Shingleton WD, Hodges DJ, Brick P, Cawston TE. Collagenase: a key enzyme in collagen turnover. Biochem Cell Biol. 1996;74(6):759-775. PubMed, CrossRef
  14. Holmbeck K, Birkedal-Hansen H. Collagenases. In: Encyclopedia of Biological Chemistry. Elsevier Inc.,2013. P. 542-544. CrossRef
  15. Mótyán JA, Tóth F, Tőzsér J. Research applications of proteolytic enzymes in molecular biology. Biomolecules. 2013;3(4):923-942. PubMed, PubMedCentral, CrossRef
  16. Hatz RA, von Jan NCS, Schildberg FW. The role of collagenase in wound healing. In: Westerhof W, Vanscheidt W. (Eds.). Proteolytic Enzymes and Wound Healing. Springer, 1994: 75-88. CrossRef
  17. Alipour H, Raz A, Zakeri S, Dinparast DN. Therapeutic applications of collagenase (metalloproteases): a review. Asian Pac J Trop Biomed. 2016;6(11):975-981. CrossRef
  18. Shekhter AB, Balakireva AV, Kuznetsova NV, Vukolova MN, Litvitsky PF, Zamyatnin AA Jr. Collagenolytic Enzymes and their Applications in Biomedicine. Curr Med Chem. 2019;26(3):487-505.
    PubMed, CrossRef
  19. Pal GK, PV S. Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition. RSC Adv. 2016;6(40):33763-33780. CrossRef
  20. Toptikov VA, Totskiy VM, Alekseyeva TG, Kovtun OO. Peculiarities of proteinase activity in digestive tract of the veined rapa whelk (Rapana venosa) from the north-western section of the Black Sea. Hydrobiol J. 2015;51(1):79-89. CrossRef
  21. Patterson ML, Atkinson SJ, Knäuper V, Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett. 2001;503(2-3):158-162. PubMed, CrossRef
  22. Dekina S, Romanovska I, Sevastyanov O, Shesterenko Y, Ryjak A, Varbanets L, Natalia D, Muratov E. Development and characterization of chitosan/polyvinyl alcohol polymer material with elastolytic and collagenolytic activities. Enzyme Microb Technol. 2020;132:109399. PubMed, CrossRef
  23. Mandl I. Collagenase. Science. 1970;169(3951):1234-1238. PubMed, CrossRef
  24. Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972;48(2):422-427. PubMed, CrossRef
  25. Dotsenko OI, Taradina GV. Biophysics. Enzymatic kinetics. Dynamic models of biological processes. Theory. Laboratory practice. Vinnytsia: Vasyl Stus DonNU; 2017. 183 p. (In Ukrainian).
  26. He Y, Hang D, Lu M. A simple and practical method for the oxidation of thiols to disulfides at mild conditions without solvents. Phosphorus Sulfur Silicon Relat Elem. 2012;187(9):1118-1124. CrossRef
  27. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. PubMed, CrossRef
  28. Kim SK, Park PJ, Kim JB, Shahidi F. Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. J Biochem Mol Biol. 2002;35(2):165-171. PubMed, CrossRef
  29. Baehaki A. Purification and characterization of collagenase from Bacillus licheniformis F11.4. Afr J Microbiol Res. 2012;6(10): 2373-2379. CrossRef
  30. Daboor SM, Budge SM, Ghaly AE, Brooks MS, Dave D. Isolation and activation of collagenase from fish processing waste. Adv Biosci Biotechnol. 2012;3(3):191-203. CrossRef
  31. Młynarczyk G, Gudowska-Sawczuk M, Mroczko B, Bruczko-Goralewska M, Romanowicz L, Tokarzewicz A. Higher Content but No Specific Activity in Gelatinase B (MMP-9) Compared with Gelatinase A (MMP-2) in Human Renal Carcinoma. Cancers (Basel). 2023;15(22):5475. PubMed, PubMedCentral, CrossRef
  32. Ricci S, D’Esposito V, Oriente F, Formisano P, Di Carlo A. Substrate-zymography: a still worthwhile method for gelatinases analysis in biological samples. Clin Chem Lab Med. 2016;54(8):1281-1290. PubMed, CrossRef
  33. Suphatharaprateep W, Cheirsilp B, Jongjareonrak A. Production and properties of two collagenases from bacteria and their application for collagen extraction. N Biotechnol. 2011;28(6):649-655. PubMed, CrossRef
  34. Panwar P, Du X, Sharma V, Lamour G, Castro M, Li H, Brömme D. Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J Biol Chem. 2013;288(8):5940-5950. PubMed, PubMedCentral, CrossRef
  35. Aguda AH, Panwar P, Du X, Nguyen NT, Brayer GD, Brömme D. Structural basis of collagen fiber degradation by cathepsin K. Proc Natl Acad Sci USA. 2014;111(49):17474-17479. PubMed, PubMedCentral, CrossRef
  36. Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1803(1):20-28.
    PubMed, CrossRef
  37. Shaikh N, Agwuocha S. Types of lectins and their therapeutic potential. J Surv Fish Sci. 2023;10(2):106-117.
  38. Guo L, Hussain AA, Limb GA, Marshall J. Age-dependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Invest Ophthalmol Vis Sci. 1999;40(11):2676-2682. PubMed
  39. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA. 1990;87(14):5578-5582. PubMed, PubMedCentral, CrossRef
  40. Wu S, Zhou X, Jin Z, Chen H. Collagenases and their inhibitors: a review. Collagen Leather. 2023;5:19. CrossRef
  41. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-958. PubMed, PubMedCentral, CrossRef
  42. Selent J, Kaleta J, Li Z, Lalmanach G, Brömme D. Selective inhibition of the collagenase activity of cathepsin K. J Biol Chem. 2007;282(22):16492-16501. PubMed, PubMedCentral, CrossRef
  43. Fallas JA, Gauba V, Hartgerink JD. Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J Biol Chem. 2009;284(39):26851-26859. PubMed, PubMedCentral, CrossRef
  44. Gurry T, Nerenberg PS, Stultz CM. The contribution of interchain salt bridges to triple-helical stability in collagen. Biophys J. 2010;98(11):2634-2643. PubMed, PubMedCentral, CrossRef
  45. Kotch FW, Raines RT. Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci USA. 2006;103(9):3028-3033. PubMed, PubMedCentral, CrossRef
  46. Parimal S, Garde S, Cramer SM. Effect of guanidine and arginine on protein-ligand interactions in multimodal cation-exchange chromatography. Biotechnol Prog. 2017;33(2):435-447. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.