Tag Archives: Bacillus sp. IMV B-7883

Мixed-ligand complexes of germanium – 3d-metal with 1-hydroxyethane-1,1-diphosphonic acid аnd 2,2′-bipyridine as modulators of Bacillus sp. IMV B-7883 elastase and fibrinogenase activity

O. V. Gudzenko1*, L. D. Varbanets1, I. I. Seifullina2,
О. E. Martsynko2, K. K. Tsymbalyuk2,3

1Zabolotny Institute of Microbiology and Virology,
National Academy of Sciences of Ukraine, Kyiv;
2Odesa Mechnikov National University, Ukraine;
3LLC “INSPECTORAT UKRAINE”, Odesa, Ukraine;
*e-mail:alena.gudzenko81@gmail.com

Received: 07 November 2023; Revised: 11 December 2023;
Accepted: 01 February 2024; Available on-line: 26 February 2024

We have previously shown that Bacillus sp. IMV B-7883 exhibits both elastase and fibrinogenolytic activity. One of the approaches to enhance enzymatic activity is the use of coordination compounds capable to affect enzyme’s activity or synthesis. The purpose of this work was to study the effect of mixed-ligand complexes of Ge(IV) – Co(II) (Ni(II), Cu(II)) with 1-hydroxyethane-1,1-diphosphonic acid аnd 2,2′-bipyridine on the activity of elastase and fibrinogenase purified from Bacillus sp. IMV B-7883. Previously synthesized and characterized mixed-ligand complexes and enzymes purified from the supernatant of the bacterial culture liquid were used in the study. Elastase activity was determined colorimetrically with the use of Congo red, fibrinogenase activity was estimated by fibrinogen hydrolysis measured by absorption at 275 nm. It was shown that complexes 1 (C132H164Co4Ge6N24O68P12) and 2 (C132H148Ge6N24Ni4O60P12) inhibited activity of Bacillus sp. IMV B-7883 elastase by 54 and 71% respectively, while complex 3 (C92H128Cu4Ge6N16O63P12) enhanced it by 30%. Stimulating effect of all three complexes on fibrinogenase activity was revealed. Thus, complex 1 and 2 activated the enzyme by more than 50% and complex 1 – by 19%. The data obtained indicate a complex mechanism of the studied complexes influence on enzymatic activity depending on both their composition and structure.

Isolation and characterization of Bacillus sp. IMV B-7883 proteases

O. V. Gudzenko*, L. D. Varbanets

Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine;
*e-mail: alena.gudzenko81@gmail.com

Received: 20 July 2023; Revised: 12 September 2023;
Accepted: 27 October 2023; Available on-line: 06 November 2023

The representatives of Bacillus are some of the best protease producers studied so far since they exhibit broad substrate specificity, significant activity, stability, simple downstream purification, short period of fermentation and low cost. Earlier, we showed that Bacillus sp. IMV B-7883 strain synthesizes an extracellular proteases, which exhibit elastolytic and fibrinogenolytic activity. The aim of the work was to isolate and purify these enzymes from the culture liquid of the Bacillus sp. IMV B-7883 strain, as well as to study their properties. Isolation and purification of proteases was carried out by precipitation of the culture liquid with ammonium sulfate, gel permeation and ion exchange chromatography and rechromatography on Sepharose 6B. As a result, proteases with elastolytic and fibrinogenolytic activity with a molecular weight of 23 and 20 kDa respectively were isolated with elastase activity increased by 63.6 and fibrinogenolytic activity by 44.1 times. The enzyme with elastase activity had a pH-optimum of 7.0 and hydrolyzed only elastin, while the enzyme with fibrinogenolytic activity was an alkaline protease with a pH-optimum of 8.0 and in addition to fibrinogen, showed specificity for fibrin and, in trace amounts, for collagen.