Tag Archives: glycoproteins

Carbohydrate composition of rat intestine surface mucus layer after ceftriaxone treatment

Yu. V. Holota, Ya. A. Olefir, T. V. Dovbynchuk, G. M. Tolstanova

Educational and Scientific Centre Institute of Biology and Medicine,
Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: gtolstanova@gmail.com

The epidemiological studies have shown that antibiotic treatment increases the susceptibility to inflammatory bowel disease development. The disturbance of mucus layer integrity might be one of the possible mechanisms. The aim of the present study was to investigate the effect of antibiotic ceftriaxone treatment on glycoproteins level and its carbohydrate composition in surface mucus layer of rat intestine. The study was done on male Wistar rats (140-160 g). Ceftriaxone (300 mg/kg, i.m.) was administered once a day for 14 days. The surface mucus from terminal ileum and colon were collected on the 15th, 29th and 72nd days of the experiment. Total level of mucus glycoproteins, hexoses, hexosamines, fucose and sialic acids were measured. Ceftriaxone administration did not affect the levels of glycoproteins in rat ileum. In the colon, the levels of glycoprotein were 1.3-fold decreased (Р < 0.05) on the 72nd day of the experiment. These changes were accompanied by the 1.2-fold decrease of hexoses (Р < 0.05) and 3.1-fold (Р < 0.05) decrease of fucose level and 1.5-fold (Р < 0.05) increase of the levels of sialic acids in the surface mucus of the rat colon. Thus, ceftriaxone administration induces the long-term changes in the levels of glycoproteins and carbohydrates composition in the rat colon surface mucus. This could potentially explain the susceptibility to inflammatory bowel disea­ses development.

Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout

О. P. Kanyuka1, Ye. Z. Filyak1, O. R. Kulachkovskyy1, Y. L. Osyp2, N. O. Sybirna1

1Ivan Franko Lviv National University, Ukraine;
e-mail: kanokaol@yahoo.com;
2Lesya Ukrainka Eastern European National University, Lutsk, Ukraine

A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein – β-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of ery­throcyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed under pttg gene knockout.