Tag Archives: heat resistance

Hydrogen peroxide as a signal mediator at inducing heat resistance in wheat seedlings by putrescine

Yu. E. Kolupaev1,2, A. I. Kokorev1, T. O. Yastreb1, E. I. Horielova1

1Dokuchaev Kharkiv National Agrarian University, Ukraine,
e-mail: plant_biology@ukr.net;
2Karazin Kharkiv National University, Ukraine

Received: 27 May 2019; Accepted: 18 October 2019

Polyamines are multifunctional stress metabolites of plants. However, information on the effect of exo­genous polyamines on plant resistance to high temperatures is contradictory, and it remains unclear which signal mediators are involved in the realization of their physiological effects. The possible involvement of hydrogen peroxide as a mediator under the action of exogenous diamine putrescine on the resistance of etiolated wheat seedlings (Triticum aestivum L.) to hyperthermia (10-minute heating at 46°C) and the functioning of antioxidant system was investigated. It was established that the treatment of seedlings with putrescine in 0.25–2.5 mM concentrations caused a significant increase in their heat resistance. In response to the putrescine effect, a transient increase in the H2O2 content occurred in the root cells. This effect was eliminated by treatment of seedlings with a diamine oxidase inhibitor aminoguanidine and an NADPH oxidase inhibitor imidazole. These inhibitors, as well as the scavenger of hydrogen peroxide dimethylthiourea (DMTU), mitigated the effects of increased heat resistance of seedlings and increased activity of superoxide dismutase and catalase caused by putrescine. Under the influence of DMTU and imidazole, but not aminoguanidine, the effect of increasing the activity of guaiacol peroxidase in the roots of seedlings treated with putrescine was eliminated. The conclusion was made about the role of hydrogen peroxide and the possible participation of diamine oxidase and NADPH oxidase in its formation during the implementation of the stress-protective effect of putrescine on wheat seedlings.

Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H(2)O(2) generation with participation of NADPH oxidase and superoxide dismutase

Yu. E. Kolupaev1,2, E. N. Firsova1, Т. О. Yastreb1

1V.V. Dokuchaev Kharkiv National Agrarian University, Ukraine;
e-mail: plant_biology@ukr.net;
2V.N. Karazin Kharkiv National University, Ukraine

The participation of enzymatic systems carrying out generation and conversion of reactive oxygen species (ROS), in realization of the stress-protective effect of hydrogen sulfide (H2S) on wheat coleoptile cells was investigated. It has been shown that the treatment of isolated coleoptiles with a 100 μM hydrogen sulfide donor sodium hydrosulfide (NaHS) caused a transient enhancement of the generation of superoxide anion radical (O2•–), an increase of hydrogen peroxide content and superoxide dismutase (SOD) activity in them. The increase in ROS generation was eliminated by the inhibitor of NADPH oxidase imidazole, but not by the peroxidase inhibitor sodium azide. Treatment of coleoptiles with SOD inhibitor sodium diethyldithiocarbamate (DDC) enhanced the generation of O2•– and neutralized the effect of increasing H2O2 content induced by NaHS. One day after treatment with the H2S donor, the generation of ROS decreased to a control level, while the activity of antioxidant enzymes increased markedly and the resistance of coleoptiles to damaging heating­ was increased. These effects of the hydrogen sulfide donor were eliminated by coleoptiles’ treatment with inhibitors of NADPH oxidase (imidazole) and SOD (DDC). It was concluded that both NADPH oxidase, genera­ting O2•– , and SOD, which turns it into H2O2 performing signaling functions, are involved in the formation of a signal that induces protective systems and causes an increase in heat resistance of plant cells.

Signal mediators at induction of heat resistance of wheat plantlets by short-term heating

Yu. V. Karpets, Yu. E. Kolupaev, T. O. Yastreb

V. V. Dokuchaev Kharkiv National Agrarian University, Ukraine;
e-mail: plant_biology@mail.ru

The effects of functional interplay of calcium ions, reactive oxygen species (ROS) and nitric oxide (NO) in the cells of wheat plantlets roots (Triticum aestivum L.) at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 °С during 1 minute) have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium), lanthanum chloride (blocker of calcium channels of various types) and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C). The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate) and NO-synthase (NG-nitro-L-arginine methyl ester – L-NAME), and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea). These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets’ heat resistance, invoked by hardening heating. The conclusion on calcium’s role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

Reactive oxygen forms and Ca ions as possible intermediaries under the induction of heat resistance of plant cells by jasmonic acid

Yu. V. Karpets, Yu. E. Kolupaev, T. O. Yastreb, O. I. Oboznyi,
M. V. Shvydenko, G. A. Lugova, A. O. Vayner

Dokuchayev Kharkiv National Agrarian University, Ukraine;
e-mail: plant_biology@mail.ru

The participation of reactive oxygen species (ROS) and calcium ions in realization of influen­ce of exogenous jasmonic acid (JA) on the heat resistance of wheat coleoptiles has been investigated­. Influence of 1 µM JA caused the transitional intensifying of generation of superoxide anion-radi­cal (O2•–) and hydrogen peroxide in coleoptiles with the maximum within 15-30 minutes after the treatment beginning. Within the first hour after the beginning of coleoptiles treatment with JA the increase of superoxide dismutase (SOD) activi­ty was noted. Later on (within 5-24 hours after the treatment beginning) there was the lowering of ROS generation by coleoptiles of experimental variant, and the SOD activity approached the control value. Intensifying of generation of superoxi­de radical induced by JA was suppressed by the antioxidant ionol and was partially levelled by imidazole (inhibitor of NADPH-oxidase), EGTA (chelator of extracellular calcium) and lanthanum chloride (calcium channels blocker). Pretreatment of coleoptiles with the ionol, imidazole, EGTA and LaCl3 also partially removed the effect of increase of their resistance to the damaging heating caused by exogenous JA. It is supposed that the ROS gene­rated with participation NADPH-oxidase, which activity depends on the receipt of calcium ions from extracellular space in the cytosol, are involved in realization of physio­logical effects of JA.