Tag Archives: superprecipitation

Influence of variuos regimens ultrasaund on oxide-modified actomyosin superprecipitation reaction from skeletal muscle of rabbit

O. V. Shelyuk, N. Ye. Nurishchenko, K. O. Medynska

Taras Shevchenko Kyiv National University, Ukraine;
e-mail: shelyuk_olga@ukr.net

A comparative study of rabbit skeletal muscles oxide-modified actomyosin superprecipitation reac­tion in dependence on continuous and impulsive (2 ms) ultrasound regimens was studied. From the analyses of kinetic curves the effect of the value of superprecipitation (АmА0), time t1/2, required for achievement of half of its value was determined, and the normalized maximal rate of this reaction Vn was also calculated. It is shown that the use of continuous ultrasound to oxide-modified actomyosin was associated with a significant decrease of superprecipitation relative to controls. However, pulsed ultrasound caused a significant increase in superprecipitation value except for the values (Аm – А0) in the application of the intensity of 0.2 W/cm2. The oxide-modified actomyosin superprecipitation value under the effect of continuous and impulsive ultrasound at intensity 1 W/cm2 in relative to control and all other applied intensities decrease to the most extent. It is caused perhaps by thermal influence of ultrasound. In general, the data obtained give reason to assume that the effects of continuous and pulsed ultrasound on the reaction of oxide-modified proteins complex superpretsipitatsii identical.

Effect of fullerene C(60) on ATPase activity and superprecipitation of skeletal muscle actomyosin

K. S. Andreichenko1, S. V. Prylutska1, K. O. Medynska1, K. I. Bogutska1,
N. E. Nurishchenko1, Yu. I. Prylutskyy1, U. Ritter2, P. Scharff2

Joint Ukrainian-German Center on Nanobiotechnology
1Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: prylut@ukr.net;
2Technical University of Ilmenau, Institute of Chemistry
and Biotechnology, Germany

Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60.