Ukr.Biochem.J. 2013; Volume 85, Issue 2, Mar-Apr, pp. 20-26

doi: http://dx.doi.org/10.15407/ubj85.02.020

Effect of fullerene C(60) on ATPase activity and superprecipitation of skeletal muscle actomyosin

K. S. Andreichenko1, S. V. Prylutska1, K. O. Medynska1, K. I. Bogutska1,
N. E. Nurishchenko1, Yu. I. Prylutskyy1, U. Ritter2, P. Scharff2

Joint Ukrainian-German Center on Nanobiotechnology
1Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: prylut@ukr.net;
2Technical University of Ilmenau, Institute of Chemistry
and Biotechnology, Germany

Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60.

Keywords: , , , , ,


References:

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature. 1985 Nov;318(6042):162-3. CrossRef
  2. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Series: Carbon Materials: Chemistry and Physics. Cataldo F., Da Ros T. (Eds.). Netherlands: Springer, 2008. 408 p.
  3. Zhu J, Ji Z, Wang J, Sun R, Zhang X, Gao Y, Sun H, Liu Y, Wang Z, Li A, Ma J, Wang T, Jia G, Gu Y. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small. 2008 Aug;4(8):1168-75. PubMed, CrossRef
  4. Prylutska SV, Burlaka AP, Prylutskyy YI, Ritter U, Scharff P. Pristine C(60) fullerenes inhibit the rate of tumor growth and metastasis. Exp Oncol. 2011 Sep;33(3):162-4. PubMed
  5. Prylutska SV, Burlaka AP, Klymenko PP, Grynyuk II, Prylutskyy YI, Schütze C, Ritter U. Using water-soluble C(60) fullerenes in anticancer therapy. Cancer Nanotechnol. 2011;2(1-6):105-110. PubMed, PubMedCentral, CrossRef
  6. Ruoff RS, Tse DS, Malhotra R, Lorents DC. Solubility of fullerene (C60) in a variety of solvents. J Phys Chem. 1993;97(13):3379-83. CrossRef
  7. Hirsch A., Brettreich M. Fullerenes – Chemistry and Reactions. New York: John Wiley & Sons, 2005. 437 p.
  8. Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM, Bilyi MM, Golub OA, Khavryuchenko AV, Buzaneva EV, Aksenov VL, Avdeev MV, Prylutskyy YuI, Durov SS. Structure of C60 fullerene in water: spectroscopic data. Carbon. 2004;42(5-6):1203-6. CrossRef
  9. Bulavin L, Adamenko I, Prylutskyy Yu,  Durov S, Graja A, Bogucki A, Scharff P. Structure of fullerene C60 in aqueous solution.  Phys Chem Chem Phys. 2000;2(8):1627-9. CrossRef
  10. Prylutska S, Bilyy R, Overchuk M, Bychko A, Andreichenko K, Stoika R, Rybalchenko V, Prylutskyy Y, Tsierkezos NG, Ritter U. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J Biomed Nanotechnol. 2012 Jun;8(3):522-7. PubMed, CrossRef
  11. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci. 2010 Apr;114(2):162-82. Review. PubMed, CrossRef
  12. Prylutska SV, Matyshevska OP, Golub AА,  Prylutskyy YI, Potebnya G-P, RitterU, Scharff P.   Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater Sci Engineer C. 2007 Sep;27(5-8):1121-4. CrossRef
  13. Prylutska SV, Grynyuk II, Grebinyk SM, Matyshevska OP, Prylutskyy YI, Ritter U, Siegmund C, Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat. wiss. u. Werkstofftech. 2009;40(4):238-241. CrossRef
  14. Satoh M, Matsuo K, Kiriya H, Mashino T, Hirobe M, Takayanagi I. Inhibitory effect of a fullerene derivative, monomalonic acid C60, on nitric oxide-dependent relaxation of aortic smooth muscle. Gen Pharmacol. 1997 Sep;29(3):345-51. PubMed, CrossRef
  15. Lu LH, Lee YT, Chen HW, Chiang LY, Huang HC. The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated C60, on vascular smooth muscle cells. Br J Pharmacol. 1998 Mar;123(6):1097-102. PubMed, PubMedCentral, CrossRef
  16. Amirshahi N, Alyautdin RN, Sarkar S, Rezayat SM, Orlova MA, Trushkov IV, Buchachenko AL, Kuznetsov DA. Fullerene-based low toxic nanocationite particles (porphyrin adducts of cyclohexyl fullerene-C(60)) to treat hypoxia-induced mitochondrial dysfunction in mammalian heart muscle. Arch Med Res. 2008 Aug;39(6):549-59. PubMed, CrossRef
  17. Podlubnaya ZA, Marsagishvili LG. New amyloid proteins of the titin family and their properties: prospects for diagnosis and treatment of amyloidosis. Tekhnologii Zhyvykh Sistem. 2008;5(5-6):11-21 (in Russian).
  18. Rajagopalan M, Oh IK. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide. ACS Nano. 2011 Mar 22;5(3):2248-56. PubMed, CrossRef
  19. Koubassova NA, Tsaturyan AK. Molecular mechanism of actin-myosin motor in muscle. Biochemistry (Mosc). 2011 Dec;76(13):1484-506. PubMed, CrossRef
  20. Grebowski J, Krokosz A, Puchala M. Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene. Biochim Biophys Acta. 2013 Feb;1828(2):241-8. PubMed, CrossRef
  21. Edman KA. Contractile performance of striated muscle. Adv Exp Med Biol. 2010;682:7-40. Review. PubMed, CrossRef
  22. Shelud’ko NS, Tikunov BA, Kropacheva IV, Permiakova TV, Iudin IuK. A mechanism for dual-stage kinetics of actomyosin superprecipitation. Biofizika. 1994 May-Jun;39(3):418-22. Russian. PubMed
  23. Kabsch W, Mannherz HG, Suck D,  Pai EF, HolmesKC. Atomic structure of the actin: DNase I complex. Nature. 1990 Sep;347(6288):37-44. PubMed, CrossRef
  24. Gulick AM, Bauer CB, Thoden JB, Rayment I. X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry. 1997 Sep 30;36(39):11619-28. PubMed, CrossRef
  25. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS. A critical assessment of docking programs and scoring functions. J Med Chem. 2006 Oct 5;49(20):5912-31. PubMed, CrossRef
  26. Tartakovskiy A. D. Biophysical and biochemical methods for studying muscle proteins. Leningrad: Nauka, 1978. P. 55-76 (in Russian).
  27. Sobieszek A. Gradient polyacrylamide gel electrophoresis in presence of sodium dodecyl sulfate: a practical approach to muscle contractile and regulatory proteins. Electrophoresis. 1994 Aug-Sep;15(8-9):1014-20. PubMed, CrossRef
  28. Burdyga V, Kosterin SA. Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys. 1991 Dec;10(6):589-98. PubMed
  29. Lakin GF. Biometrics. Moscow: Vysh. Shkola, 1980 (in Russian).
  30. Cherepanov VV, Senenko A. I. Prylutskyy YuI, Marchenko АА, Naumovets AG. Film structure of unmodified C60 fullerenes adsorbed from physiological solutions on the surface of mica and gold. Dopovidi Nats Akad Nauk Ukrainy. 2012;(10):77-82 (in Ukrainian).
  31. Genth E. Inflammatory muscle diseases: dermatomyositis, polymyositis, and inclusion body myositis. Internist (Berl). 2005 Nov;46(11):1218-32. Review. German. PubMed
  32. Rider LG, Werth VP, Huber AM, Alexanderson H, Rao AP, Ruperto N, Herbelin L, Barohn R, Isenberg D, Miller FW. Measures of adult and juvenile dermatomyositis, polymyositis, and inclusion body myositis: Physician and Patient/Parent Global Activity, Manual Muscle Testing (MMT), Health Assessment Questionnaire (HAQ)/Childhood Health Assessment Questionnaire (C-HAQ), Childhood Myositis Assessment Scale (CMAS), Myositis Disease Activity Assessment Tool (MDAAT), Disease Activity Score (DAS), Short Form 36 (SF-36), Child Health Questionnaire (CHQ), physician global damage, Myositis Damage Index (MDI), Quantitative Muscle Testing (QMT), Myositis Functional Index-2 (FI-2), Myositis Activities Profile (MAP), Inclusion Body Myositis Functional Rating Scale (IBMFRS), Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), Cutaneous Assessment Tool (CAT), Dermatomyositis Skin Severity Index (DSSI), Skindex, and Dermatology Life Quality Index (DLQI). Arthritis Care Res (Hoboken). 2011 Nov;63(Suppl 11):S118-57. Review. PubMed, PubMedCentral, CrossRef
  33. Kornegay JN, Childers MK, Bogan DJ, Bogan JR, Nghiem P, Wang J, Fan Z, Howard JF Jr, Schatzberg SJ, Dow JL, Grange RW, Styner MA, Hoffman EP, Wagner KR. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am. 2012 Feb;23(1):149-72, xii. Review. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.