Ukr.Biochem.J. 2014; Volume 86, Issue 5, Sep-Oct, pp. 56-64


Actomyosin ATPase activity of skeletal muscles and the markers of tissue damage in the blood of rats under prolonged chronic alcoholization

Yu. V. Tseyslyer1, О. M. Podpalova2, N. Е. Nurishchenko1, V. S. Маrtyniuk1

1ESC Institute of Biology, Taras Shevchenko National University of Kyiv, Ukraine;
2Bogomolets National Medical University, Kyiv, Ukraine;

The activity of creatine kinase and indices of lipid metabolism in the blood and also actomyosin ATPase activity of skeletal muscles of rats under chronic 8-month alcohol abuse were investigated. It is shown that actomyosin K+-ATPase activity of skele­tal muscles increases from two months of ethanol use, but actomyosin Mg2+-ATPase activity decreases during 6-8 months of alcoholization. From two months of ethanol use the creatine kinase activity, as an enzyme marker of muscle tissue damage, statistically significantly increases during all the period of the animals alcoholization. The level of total lipid increases after two months of alcohol consumption (in blood plasma by 30% and in erythrocyte mass by 65%). For longer periods of alcoholization (4-8 months) the level of lipids remains almost the same, whereas in erythrocyte mass it does not differ from control values. The level of diene conjugates in the blood plasma reduces and the amount of ketone derivatives of fatty acid residues increases that points to the inhibition of some components of the antioxidant system that control detoxification of hydroperoxides of fatty acids and also to activation of free radical damage of tissues. There were no significant changes of lipid peroxidation level in erythrocyte mass at any stage of alcoholization.

Keywords: , , , , ,


  1. Permyakov AV, Viter VI. Patomorfologija and thanatogenesis of alcohol intoxication. Izhevsk: Examination, 2002. 240 с. (In Russian).
  2. Lovinger DM. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res Health. 2008;31(3):196-214. Review. PubMed, PubMedCentral
  3. National Institute of Alcohol Abuse and Alcoholism. Alcohol Alert. Alcohol metabolism: up date. 2007;72:1-6.
  4. Mishchuk DO, Kaplia AA. State of the Na+, K+-ATPase system of the female rat brain cerebral cortex in the postnatal period during ethanol consumption in pregnancy and lactation. Ukr Biokhim Zhurn. 2002 Nov-Dec;74(6):58-64. Russian. PubMed
  5. Kaplia AA, Babich LV, Mishchuk DO, Didenko NV. The comparative characteristic of short-term and long-term ethanol effects on the rat organism state. Ukr Biokhim Zhurn. 2005;77(6):73-8. Russian. PubMed
  6. National Institute of Alcohol Abuse and Alcoholism. Alcohol Alert. Alcohol Liver Dis. 2005;64:1-6.
  7. National Institute of Alcohol Abuse and Alcoholism. Alcohol Alert. Alcohol’s Damaging Effects on the Brain. 2004;63:1-8.
  8. Kazantsev Yu., Zinoviev A., Shenkman B. Chronic alcoholic myopathy. Pathogenetic mechanisms. LAP Lambert Academic Publishing, 2011. 100 p. (In Russian).
  9. National Institute on Alcohol Abuse and Alcoholism. Publications.
  10. Fernandez-Sola J, Preedy VR, Lang CH, Gonzalez-Reimers E, Arno M, Lin JC, Wiseman H, Zhou S, Emery PW, Nakahara T, Hashimoto K, Hirano M, Santolaria-Fernández F, González-Hernández T, Fatjó F, Sacanella E, Estruch R, Nicolás JM, Urbano-Márquez A. Molecular and cellular events in alcohol-induced muscle disease. Alcohol Clin Exp Res. 2007 Dec;31(12):1953-62. PubMed, CrossRef
  11. Preedy VR, Ohlendieck K, Adachi J, Koll M, Sneddon A, Hunter R, Rajendram R, Mantle D, Peters TJ. The importance of alcohol-induced muscle disease. J Muscle Res Cell Motil. 2003;24(1):55-63. Review. PubMed
  12. Urbano-Márquez A, Fernández-Solà J. Effects of alcohol on skeletal and cardiac muscle. Muscle Nerve. 2004 Dec;30(6):689-707. Review. PubMed, CrossRef
  13. Vary TC, Nairn AC, Lang CH. Restoration of protein synthesis in heart and skeletal muscle after withdrawal of alcohol. Alcohol Clin Exp Res. 2004 Apr;28(4):517-25. PubMed, CrossRef
  14. Fernandez-Sola J., Preedy V. R., Lang C. H., Gonzalez-Reimers E., Arno M., Lin J. C., Wiseman H., Zhou S., Emery P. W., Nakahara T., Hashimoto K., Hirano M., Santolaria-Fernández F., González-Hernández T., Fatjó F., Sacanella E., Estruch R., Nicolás J. M., Urbano-Márquez A. Molecular and cellular events in alcohol-induced muscle disease. Alcohol Clin Exp Res. 2007 Dec;31(12):1953-62. PubMed, CrossRef
  15. Medical laboratory technology. B. R. Ed. A. I. Karpishchenko. St. Petersburg: Intermedika, 2002. 2. 600 p. (In Russian).
  16. Govoril A. V., Gerasimov A. I., Filev A. P. Changes in serum lipids in alcoholic heart lesion. Alcoholic Dis. 1997;(9):112-115. (In Russian).
  17. Crabb DW, Liangpunsakul S. Alcohol and lipid metabolism. J Gastroenterol Hepatol. 2006 Oct;21 Suppl 3:S56-60. Review. PubMed
  18. Lussier-Cacan S, Bolduc A, Xhignesse M, Niyonsega T, Sing CF. Impact of alcohol intake on measures of lipid metabolism depends on context defined by gender, body mass index, cigarette smoking, and apolipoprotein E genotype.  Arterioscler Thromb Vasc Biol. 2002 May 1;22(5):824-31. PubMed, CrossRef
  19. Adachi J, Asano M, Ueno Y, Niemelä O, Ohlendieck K, Peters TJ, Preedy VR. Alcoholic muscle disease and biomembrane perturbations (review). J Nutr Biochem. 2003 Nov;14(11):616-25. Review. PubMed, CrossRef
  20. Bardina LR, Satanovskaia VI. Metabolic adaptation to alcohol in rats with different preference of ethanol over water. Vopr Med Khim. 1999 Mar-Apr;45(2):117-22. Russian. PubMed
  21. Tartakovsky AD. Comp.: Biophysical and biochemical methods for investigating muscle proteins. Ed. Ivanitskogo G. R. L.: Nauka, 1978. P. 55-76. (In Russian).
  22. Doson R., Elliot D., Elliot U., Jones K. Spravochnik biokhimika. M.: Mir, 1991. P. 465-466. (In Russian).
  23. Kamyshnikov V. S. Handbook of clinical and biochemical studies and laboratory diagnosis. M.: MEDpres-Inform, 2004. P. 672-677. (In Russian).
  24. Worrall S, Niemela O, Parkkila S, Peters TJ, Preedy VR. Protein adducts in type I and type II fibre predominant muscles of the ethanol-fed rat: preferential localisation in the sarcolemmal and subsarcolemmal region. Eur J Clin Invest. 2001 Aug;31(8):723-30. PubMed, CrossRef
  25. Biochemical research methods in clinic. Ed. A. A. Pokrovsky M.: Meditsina, 1969. P. 287-288. (In Russian).
  26. Placer Z. Lipoperoxydations systeme im biologischen. Material 2. Mitt. Bestimmung der Lipoperoxydation im Säugetierorganismus. Food. Nahrung. 1968;12(6):679-684. CrossRef
  27. Glantz S. Biomedical Statistics. M.: Praktika, 1998. 459 p. (In Russian)
  28. Manfredi TG, Fielding RA, O’Reilly KP, Meredith CN, Lee HY, Evans WJ. Plasma creatine kinase activity and exercise-induced muscle damage in older men. Med Sci Sports Exerc. 1991 Sep;23(9):1028-34. PubMed, CrossRef
  29. Segal M, Avital A, Rusakov A, Sandbank S, Weizman A. Serum creatine kinase activity differentiates alcohol syndromes of dependence, withdrawal and delirium tremens. Eur Neuropsychopharmacol. 2009 Feb;19(2):92-6. Epub 2008 Dec 5. PubMed, CrossRef
  30. Campbell M. K., Farrell S. O. Biochemistry. 5th. Cengage Learning, 2006. P. 579.
  31. Dvorshchenko CO, Berven OL, Gaida LM, Stepanov YuV. Antioxidant system of rat hepatocytes under conditions of ulcers of the stomach. Phys. Live. 2009;17(2):98-101. (In Ukrainian).
  32. Maksymovych S, Kharchenko O, Ogorodnik L, Vereshchaka V, Raksha N, Kovalova V, Bogun L, Sokur O, Ostapchenko L. Research of molecular-cell processes in normal and under pathology inconditions of action of exo- and endogenic factors, biologically active matter and substance. Bulletin of Taras Shevchenko National University of Kyiv. Series: “Problems of Physiologic Functions Regulation”. 2012;15:17-22. (In Ukrainian).
  33. Vladimirov Y. A., Azizov O. A., Deev A. I., Kozlov A. V. Free radicals in living systems: collection. VINITI. Results of science and technology. Series: Biophysica. М. 1991;29:249 р. (In Russian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.