Tag Archives: actomyosin

Influence of variuos regimens ultrasaund on oxide-modified actomyosin superprecipitation reaction from skeletal muscle of rabbit

O. V. Shelyuk, N. Ye. Nurishchenko, K. O. Medynska

Taras Shevchenko Kyiv National University, Ukraine;
e-mail: shelyuk_olga@ukr.net

A comparative study of rabbit skeletal muscles oxide-modified actomyosin superprecipitation reac­tion in dependence on continuous and impulsive (2 ms) ultrasound regimens was studied. From the analyses of kinetic curves the effect of the value of superprecipitation (АmА0), time t1/2, required for achievement of half of its value was determined, and the normalized maximal rate of this reaction Vn was also calculated. It is shown that the use of continuous ultrasound to oxide-modified actomyosin was associated with a significant decrease of superprecipitation relative to controls. However, pulsed ultrasound caused a significant increase in superprecipitation value except for the values (Аm – А0) in the application of the intensity of 0.2 W/cm2. The oxide-modified actomyosin superprecipitation value under the effect of continuous and impulsive ultrasound at intensity 1 W/cm2 in relative to control and all other applied intensities decrease to the most extent. It is caused perhaps by thermal influence of ultrasound. In general, the data obtained give reason to assume that the effects of continuous and pulsed ultrasound on the reaction of oxide-modified proteins complex superpretsipitatsii identical.

Effect of electromagnetic field of extremely low frequency on ATPase activity of actomyosin

Yu. V. Tseyslyer, O. V. Shelyuk, V. S. Martynyuk, N. E. Nuryschenko

ESC Institute of Biology, Taras Shevchenko Kyiv National University, Ukraine;
e-mail: yuliya.tseysler@gmail.com;

The Mg2+/Ca2+ and K+-ATPase actomyosin activity of rabbit skeletal muscle was evaluated by the Fiske-Subbarow method during a five-hour exposition of protein solutions in electromagnetic field of extremely low frequency of 8 Hz and 25 µT induction. The results of the study of the ATPase activity of actomyosin upon electromagnetic exposure have shown statistically significant changes that are characterized by a rather complex time dynamics. After 1, 2 and 4 hours of exposure of protein solutions the effect of ELF EMF exposure inhibits the ATPase activity compared to control samples, which are not exposed to the magnetic field. By the third and fifth hours of exposure to the electromagnetic field, there is a significant increase in the ATPase activity of actomyosin. It should be noted that a similar pattern of change in enzyme activity was universal, both for the environment by Mg2+ and Ca2+, and in the absence of these ions in the buffer. This can evidence for Ca2+-independent ways of the infuence of electromagnetic field (EMP) on biologic objects. In our opinion, the above effects are explained by EMP influence on the dynamic properties of actomyosin solutions, which are based on the processes of spontaneous dynamic formation of structure.

Actomyosin ATPase activity of skeletal muscles and the markers of tissue damage in the blood of rats under prolonged chronic alcoholization

Yu. V. Tseyslyer1, О. M. Podpalova2, N. Е. Nurishchenko1, V. S. Маrtyniuk1

1ESC Institute of Biology, Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: yuliya.tseysler@gmail.com,
2Bogomolets National Medical University, Kyiv, Ukraine;
e-mail: olgapodpalova@gmail.com

The activity of creatine kinase and indices of lipid metabolism in the blood and also actomyosin ATPase activity of skeletal muscles of rats under chronic 8-month alcohol abuse were investigated. It is shown that actomyosin K+-ATPase activity of skele­tal muscles increases from two months of ethanol use, but actomyosin Mg2+-ATPase activity decreases during 6-8 months of alcoholization. From two months of ethanol use the creatine kinase activity, as an enzyme marker of muscle tissue damage, statistically significantly increases during all the period of the animals alcoholization. The level of total lipid increases after two months of alcohol consumption (in blood plasma by 30% and in erythrocyte mass by 65%). For longer periods of alcoholization (4-8 months) the level of lipids remains almost the same, whereas in erythrocyte mass it does not differ from control values. The level of diene conjugates in the blood plasma reduces and the amount of ketone derivatives of fatty acid residues increases that points to the inhibition of some components of the antioxidant system that control detoxification of hydroperoxides of fatty acids and also to activation of free radical damage of tissues. There were no significant changes of lipid peroxidation level in erythrocyte mass at any stage of alcoholization.