Ukr.Biochem.J. 2014; Volume 86, Issue 4, Jul-Aug, pp. 164-177

doi: http://dx.doi.org/10.15407/ubj86.04.164

Comparative characteristic of the methods of protein antigens epitope mapping

O. Yu. Galkin

National Technical University of Ukraine “Kyiv Polytechnic Institute”;
e-mail: alexfbt@mail.ru

Comparative analysis of experimental methods of epitope mapping of protein antigens has been carried out. The vast majority of known techniques are involved in immunochemical study of the interaction of protein molecules or peptides with antibodies of corresponding specifici­ty. The most effective and widely applicable metho­dological techniques are those that use synthetic and genetically engineered peptides. Over the past 30 years, these groups of methods have travelled a notable evolutionary path up to the maximum automation and  the detection of antigenic determinants of various types (linear and conformational epitopes, and mimotopes). Most of epitope searching algorithms were integrated into a computer program, which greatly facilitates the analysis of experimental data and makes it possible to create spatial models. It is possible to use comparative epitope mapping for solving the applied problems; this less time-consuming method is based on the analysis of competition between different antibodies interactions with the same antigen. The physical method of antigenic structure study is X-ray analysis of antigen-antibody complexes, which may be applied only to crystallizing­ proteins, and nuclear magnetic resonance.

Keywords: , , ,


References:

  1. Petrov RV. Immunology: textbook for the students. med. universities. Moscow: Medicine, 1987. 414 p. (In Russian).
  2. Kazmirchuk VEu, Kovalchuk LV, Maltsev DV. Clinical Immunology and Allergology. Kiev: Phoenix, 2009. 524 p. (In Russian).
  3. Immunology: Textbook. A. Yu. Vershygora, Eu. U. Paster, D. V. Kolibo et al.; foreword by S. Komisarenko; edited by Eu. U. Paster.  Kiev: Vysha shola, 2005.  599 p. (In Ukrainian).
  4. Evstigneeva RP, Pal’keeva ME. Methods of locating antigenic determinants of proteins with known primary structures. Rus J Bioorg Chem. 2000;26(4):217–234. (In Russian).  CrossRef
  5. Chao G, Cochran JR, Wittrup KD. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol. 2004 Sep 10;342(2):539-50. PubMed, CrossRef
  6. Shreffler WG, Lencer DA, Bardina L, Sampson HA. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol. 2005 Oct;116(4):893-9. PubMed, CrossRef
  7. Naperova IA, Balyasnikova IV, Schwartz DE, Watermeyer J, Sturrock ED, Kost OA, Danilov SM. Mapping of conformational mAb epitopes to the C domain of human angiotensin I-converting enzyme. J Proteome Res. 2008 Aug;7(8):3396-411. PubMed, CrossRef
  8. Mata-Fink J, Kriegsman B, Yu HX, Zhu H, Hanson MC, Irvine DJ, Wittrup KD. Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol. 2013 Jan 23;425(2):444-56. PubMed, PubMedCentral, CrossRef
  9. Han T, Sui J, Bennett AS, Liddington RC, Donis RO, Zhu Q, Marasco WA. Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun. 2011 Jun 3;409(2):253-9. PubMed, PubMedCentral, CrossRef
  10. Burnie JP, al-Dughaym A. The application of epitope mapping in the development of a new serological test for Helicobacter pylori infection. J Immunol Methods. 1996 Jul 17;194(1):85-94. PubMed, CrossRef
  11. Robotham JM, Teuber SS, Sathe SK, Roux KH. Linear IgE epitope mapping of the English walnut (Juglans regia) major food allergen, Jug r 1. J Allergy Clin Immunol. 2002 Jan;109(1):143-9. PubMed, CrossRef
  12. Chandra A, Latov N, Wormser GP, Marques AR, Alaedini A. Epitope mapping of antibodies to VlsE protein of Borrelia burgdorferi in post-Lyme disease syndrome. Clin Immunol. 2011 Oct;141(1):103-10. PubMed, PubMedCentral, CrossRef
  13. Zaripov MM, Morenkov OS, Siklodi B, Barna-Vetro I, Gyöngyösi-Horvath A, Fodor I. Glycoprotein B of Aujeszky’s disease virus: topographical epitope mapping and epitope-specific antibody response. Res Virol. 1998 Jan-Feb;149(1):29-41. PubMed, CrossRef
  14. Naperova I. A. Epitope mapping of the C-terminal domain of the human angiotensin-converting enzyme: Author’s abstract of dis. … cand. chem. sciences: 03.00.04, 03.00.23. M. V. Lomonosov MSU. Moscow, 2009. 24 p. (In Russian).
  15. Spronk C. A. E. M., Nabuurs S. B., Krieger E., Vriend G., Vuister G. W. Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2004;45(3–4):315–337.  CrossRef
  16. Arnautova YA, Vila JA, Martin OA, Scheraga HA. What can we learn by computing 13Calpha chemical shifts for X-ray protein models? Acta Crystallogr D Biol Crystallogr. 2009 Jul;65(Pt 7):697-703. PubMed, PubMedCentral, CrossRef
  17. Arnon R, Sela M. Antibodies to a unique region in lysozyme provoked by a synthetic antigen conjugate. Proc Natl Acad Sci USA. 1969 Jan;62(1):163-70. PubMed, PubMedCentral, CrossRef
  18. Arnon R, Maron E, Sela M, Anfinsen CB. Antibodies reactive with native lysozyme elicited by a completely synthetic antigen. Proc Natl Acad Sci USA. 1971 Jul;68(7):1450-5. PubMed, PubMedCentral, CrossRef
  19. Papac DI, Hoyes J, Tomer KB. Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry. Protein Sci. 1994 Sep;3(9):1485-92. PubMed, PubMedCentral, CrossRef
  20. Zhao Y, Chalt BT. Protein epitope mapping by mass spectrometry. Anal Chem. 1994 Nov 1;66(21):3723-6. PubMed, CrossRef
  21. Pimenova T, Nazabal A, Roschitzki B, Seebacher J, Rinner O, Zenobi R. Epitope mapping on bovine prion protein using chemical cross-linking and mass spectrometry. J Mass Spectrom. 2008 Feb;43(2):185-95. PubMed, CrossRef
  22. Sela M. From synthetic antigens to synthetic vaccines. Biopolymers. 1983 Jan;22(1):415-24. PubMed, CrossRef
  23. Atassi MZ. Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry. 1975 May;12(5):423-38.  PubMed, CrossRef
  24. Jemmerson R, Paterson Y. Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Science. 1986 May 23;232(4753):1001-4. PubMed, CrossRef
  25. Rodionov MA, Galaktionov SG, Akhrem AA. Prediction of exposure degree diagram and sites of limited proteolysis in globular proteins as an approach to computer-aided design of protein bioregulators with prolonged action. FEBS Lett. 1987 Nov 2;223(2):402-4. PubMed, CrossRef
  26. Atassi MZ. Precise determination of protein antigenic structures has unravelled the molecular immune recognition of proteins and provided a prototype for synthetic mimicking of other protein binding sites. Mol Cell Biochem. 1980 Aug 29;32(1):21-43. Review. PubMed, CrossRef
  27. Merrifield RB. Automated synthesis of peptides. Science. 1965 Oct 8;150(3693):178-85. Review. PubMed, CrossRef
  28. Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG. Strategies for epitope analysis using peptide synthesis. J Immunol Methods. 1987 Sep 24;102(2):259-74. PubMed, CrossRef
  29. Frank R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J Immunol Methods. 2002 Sep 1;267(1):13-26. Review. PubMed, CrossRef
  30. Kostina L. V. Epitope mapping of the envelope glycoprotein E2 of classical swine fever virus: Dis. … cand. biol. sciences: 03.00.06. D. I. Ivanovsky Research Institute of Virology of RAMS. Moscow, 2008. 139 p. (In Russian).
  31. Timmerman P, Van Dijk E, Puijk W, Schaaper W, Slootstra J, Carlisle SJ, Coley J, Eida S, Gani M, Hunt T, Perry P, Piron G, Meloen RH. Mapping of a discontinuous and highly conformational binding site on follicle stimulating hormone subunit-beta (FSH-beta) using domain Scan and Matrix Scan technology. Mol Divers. 2004;8(2):61-77. PubMed, CrossRef
  32. Combinatorial library. Methods and protocols. Editor L. Bellavance. New Jersey: Humana Press, 2002. 370 p.
  33. Timmerman P, Puijk WC, Boshuizen RS, van Dijken P, Slootstra JW, Beurskens FJ, Parren PWHI, Huber A, Bachmann MF, Meloen RH. Functional reconstruction of structurally complex epitopes using CLIPSTM technology. The Open Vaccine J. 2009;2(1):56–67.  CrossRef
  34. Komissarenko SV, Skok MV, Kavoon EM, Chudnovets VS, Evstigneeva RP. Immune recognition of cytochrome c. I. Molecular requirements for antibody recognition and immune response stimulation studied in vitro with synthetic peptides. Ann Inst Pasteur Immunol. 1988 Sep-Oct;139(5):517-30. PubMed, CrossRef
  35. Ammosova TN, Uporov IV, Rubtsov MYu, Ignatenko OV, Egorov AM, Kolesanova EF, Archakov AI. Epitope mapping of horseradish peroxidase (isoenzyme C). Biochemistry (Mosc). 1997 Apr;62(4):440-7. PubMed
  36. Atassi MZ. Precise determination of the entire antigenic structure of lysozyme: molecular features of protein antigenic structures and potential of “surface-simulation” synthesis – a powerful new concept for protein binding sites. Immunochemistry. 1978 Dec;15(12):909-36.  PubMed, CrossRef
  37. Benjamin DC, Berzofsky JA, East IJ, Gurd FRN, Hannum C, Leach SJ, Margoliash E, Michael JG, Miller A, Prager EM, Reichlin M, Sercarz EE, Smith-Gill SJ, Todd PE, Wilson AC. The antigenic structure of proteins: a reappraisal. Annu Rev Immunol. 1984;2:67-101. Review. PubMed, CrossRef
  38. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985 Jun 14;228(4705):1315-7. PubMed, CrossRef
  39. Birkenmeier G, Osman AA, Kopperschläger G, Mothes T. Epitope mapping by screening of phage display libraries of a monoclonal antibody directed against the receptor binding domain of human alpha2-macroglobulin. FEBS Lett. 1997 Oct 20;416(2):193-6. PubMed, CrossRef
  40. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010 May 28;8:8.
    PubMed, PubMedCentral, CrossRef
  41. An TQ, Zhou YJ, Qiu HJ, Tong GZ, Wang YF, Liu JX, Yang JY. Identification of a novel B cell epitope on the nucleocapsid protein of porcine reproductive and respiratory syndrome virus by phage display. Virus Genes. 2005 Aug;31(1):81-7. PubMed, CrossRef
  42. Wang LF, Du Plessis DH, White JR, Hyatt AD, Eaton BT. Use of a gene-targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. J Immunol Methods. 1995 Jan 13;178(1):1-12. PubMed, CrossRef
  43. Peng WP, Hou Q, Xia ZH, Chen D, Li N, Sun Y, Qiu HJ. Identification of a conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of Classical swine fever virus by phage-displayed random peptide library. Virus Res. 2008 Aug;135(2):267-72. Epub 2008 May 15. PubMed, CrossRef
  44. Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B. Phage display in the study of infectious diseases. Trends Microbiol. 2006 Mar;14(3):141-7. Epub 2006 Feb 7. Review. PubMed, CrossRef
  45. Cho EM, Kirkland BH, Holder DJ, Keyhani NO. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology. 2007 Oct;153(Pt 10):3438-47. PubMed, CrossRef
  46. Löfblom J., Wernerus H., Ståhl S. Fine affinity discrimination by normalized fluorescence activated cell sorting in staphylococcal surface display. FEMS Microbiol Lett. 2005 Jul 15;248(2):189-98. PubMed, CrossRef
  47. Hudson EP, Uhlen M, Rockberg J. Multiplex epitope mapping using bacterial surface display reveals both linear and conformational epitopes. Sci Rep. 2012;2:706. PubMed, PubMedCentral, CrossRef
  48. Rockberg J, Löfblom J, Hjelm B, Uhlén M, Ståhl S. Epitope mapping of antibodies using bacterial surface display. Nat Methods. 2008 Dec;5(12):1039-45. PubMed, CrossRef
  49. Kang SM, Rhee JK, Kim EJ, Han KH, Oh JW. Bacterial cell surface display for epitope mapping of hepatitis C virus core antigen. FEMS Microbiol Lett. 2003 Sep 26;226(2):347-53. PubMed, CrossRef
  50. Benjamin DC, Perdue SS. Site-Directed Mutagenesis in Epitope Mapping. Methods. 1996 Jun;9(3):508-15. PubMedCrossRef
  51. Gershoni J. M., Roitburd-Berman A., Siman-Tov D. D., Tarnovitski F. N., Weiss Y. Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs. 2007;21(3):145-56. PubMed, CrossRef
  52. Hutchison CA 3rd, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M. Mutagenesis at a specific position in a DNA sequence. J Biol Chem. 1978 Sep 25;253(18):6551-60. PubMed
  53. Kochetkov SN, Kostyuk DA, Lyakhov DL. et al. Studies of the mechanism of bacteriophage T7 RNA polymerase by affinity modification and site-directed mutagenesis. Chemical modification of enzymes. Editors D. I. Kurganov, N. K. Nagradova, O. I. Lavrik. New York: Nova Science Publ., 1996. P. 347–387.
  54. Clement G, Boquet D, Frobert Y, Bernard H, Negroni L, Chatel JM, Adel-Patient K, Creminon C, Wal JM, Grassi J. Epitopic characterization of native bovine beta-lactoglobulin. J Immunol Methods. 2002 Aug 1;266(1-2):67-78. PubMed, CrossRef
  55. Sharma S, Georges F, Delbaere LT, Lee JS, Klevit RE, Waygood EB. Epitope mapping by mutagenesis distinguishes between the two tertiary structures of the histidine-containing protein HPr. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4877-81. PubMed, PubMed, CrossRef
  56. Mehra V, Sweetser D, Young RA. Efficient mapping of protein antigenic determinants. Proc Natl Acad Sci USA. 1986 Sep;83(18):7013-7. PubMed, PubMedCentral, CrossRef
  57. Todorova K, Zoubak S, Mincheff M, Kyurkchiev S. Biochemical nature and mapping of PSMA epitopes recognized by human antibodies induced after immunization with gene-based vaccines. Anticancer Res. 2005 Nov-Dec;25(6C):4727-32. PubMed
  58. Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003 Jan;60(5):523-33. Review. PubMed, CrossRef
  59. Ehrlich PH, Moyle WR, Moustafa ZA, Canfield RE. Mixing two monoclonal antibodies yields enhanced affinity for antigen. J Immunol. 1982 Jun;128(6):2709-13. PubMed
  60. Vodyanyk MO, Chernyshov VP, Gume­nuk MEu. Functional properties of cooperative monoclonal antibodies against human tumor necrosis factor. Fiziol Zhurn. 2001;47(3):73-9. Ukrainian. PubMed
  61. Galkіn OYu, Dugan OM. Comparison of schemes of Balb. c mice immunization for obtaining of monoclonal antibodies to human IgM. Immunol Allergol. 2009;1:68–73. (In Ukrainian).
  62. Galkіn OYu, Dugan OM. Development of ELISA kit for the quantitative determination of total human IgM. Ukr J Clin Labor Med. 2011;6(3):181–185. (In Ukrainian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.