Ukr.Biochem.J. 2014; Volume 86, Issue 2, Mar-Apr, pp. 79-88

doi: http://dx.doi.org/10.15407/ubj86.02.079

Proteolytic activity of IgG-antibodies of mice, immunized by calf thymus histones

Yu. Kit1, N. Korniy1,3, I. Kril’2, I. Magorivska1, V. Tkachenko1, R. Bilyy1,2, R. Stoika1

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
e-mail: kit@cellbiol.lviv.ua;
2Danylo Galytsky Lviv National Medical University, Ukraine;
3Ivan Franko L’viv National University, Ukraine

The main goal of the study was to determine the ability of histones to induce production of the proteolytically active IgG-antibodies in BALB/c mice. In order to perform this study 8 mice were immunized with the fraction of total calf thymus histones. IgGs were isolated from the serum of the immunized and not immunized animals by means of precipitation with 33% ammonium sulfate, followed by affinity chromatography on protein G-Sepharose column. Histones, myelin basic protein (MBP), lysozyme, BSA, ovalbumin, macroglobulin, casein and cytochrome c served as substrates for determining the proteolytic activity. It was found that IgGs from the blood serum of immunized mice are capable of hydrolyzing histone H1, core histone and MBP. On the contrary, the proteolytic activity of IgGs from the blood serum of not immunized mice was not detected. The absence of proteolytical enzymes in the fraction of IgGs was proven by HPLC chromatography. High levels of proteolytic activity toward histones have been also detected in affinity purified IgGs from blood serum of patients with rheumatoid arthritis, but not in healthy donors. These data indicate that eukaryotic histones may induce production of protabzymes in mammals. The possible origin of these protabzymes and their potential biological role in mammalians is discussed.

Keywords: , , , , ,


References:

  1. Gabibov AG, Ponomarenko NA, Tretyak EB, Paltsev MA, Suchkov SV. Catalytic autoantibodies in clinical autoimmunity and modern medicine. Autoimmun Rev. 2006 May;5(5):324-30. Review. PubMed, CrossRef
  2. Belogurov A Jr, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde. Bioessays. 2009 Nov;31(11):1161-71. Review. PubMed, CrossRef
  3. Planque S, Nishiyama Y, Taguchi H, Salas M, Hanson C, Paul S. Catalytic antibodies to HIV: physiological role and potential clinical utility. Autoimmun Rev. 2008 Jun;7(6):473-9. Review. PubMedPubMedCentral, CrossRef
  4. Wootla B, Lacroix-Desmazes S, Warrington AE, Bieber AJ, Kaveri SV, Rodriguez M. Autoantibodies with enzymatic properties in human autoimmune diseases. J Autoimmun. 2011 Sep;37(2):144-50. Review. PubMed, PubMedCentral, CrossRef
  5. Paul S, Volle DJ, Beach CM, Johnson DR, Powell MJ, Massey RJ. Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science. 1989 Jun 9;244(4909):1158-62. PubMed, CrossRef
  6. Paul S, Nishiyama Y, Planque S, Taguchi H. Theory of proteolytic antibody occurrence. Immunol Lett. 2006 Feb 28;103(1):8-16. Review. PubMed, CrossRef
  7. Li L, Paul S, Tyutyulkova S, Kazatchkine MD, Kaveri S. Catalytic activity of anti-thyroglobulin antibodies. J Immunol. 1995 Apr 1;154(7):3328-32. PubMed
  8. Ponomarenko NA, Durova OM, Vorobiev II, Aleksandrova ES, Telegin GB, Chamborant OG, Sidorik LL, Suchkov SV, Alekberova ZS, Gnuchev NV, Gabibov AG. Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods. 2002 Nov 1;269(1-2):197-211. PubMed
  9. Ponomarenko NA, Durova OM, Vorobiev II, Belogurov AA Jr, Kurkova IN, Petrenko AG, Telegin GB, Suchkov SV, Kiselev SL, Lagarkova MA, Govorun VM, Serebryakova MV, Avalle B, Tornatore P, Karavanov A, Morse HC 3rd, Thomas D, Friboulet A, Gabibov AG. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc Natl Acad Sci USA. 2006 Jan 10;103(2):281-6. PubMed, PubMedCentral, CrossRef
  10. Lacroix-Desmazes S, Wootla B, Delignat S, Dasgupta S, Nagaraja V, Kazatchkine MD, Kaveri SV. Pathophysiology of catalytic antibodies. Immunol Lett. 2006 Feb 28;103(1):3-7. Review. PubMed, CrossRef
  11. Paul S, Nishiyama Y, Planque S, Taguchi H. Theory of proteolytic antibody occurrence. Immunol Lett. 2006 Feb 28;103(1):8-16. Review.  PubMed, CrossRef
  12. Magorivska I, Bilyy R, Shalay O, Loginsky V, Kit Y, Stoika R. Blood serum immunoglobulins of patients with multiple myeloma are capable of hydrolysing histone H1. Exp Oncol. 2009 Jun;31(2):97-101. PubMed
  13. Paul S, Nishiyama Y, Planque S, Karle S, Taguchi H, Hanson C, Weksler ME. Antibodies as defensive enzymes. Springer Semin Immunopathol. 2005 Mar;26(4):485-503. Epub 2005 Jan 5. Review. PubMed
  14. Taguchi H, Planque S, Nishiyama Y, Szabo P, Weksler ME, Friedland RP, Paul S. Catalytic antibodies to amyloid beta peptide in defense against Alzheimer disease. Autoimmun Rev. 2008 May;7(5):391-7. Review. PubMed, PubMedCentralCrossRef
  15. Paul S, Planque S, Nishiyama Y. Immunological origin and functional properties of catalytic autoantibodies to amyloid beta peptide. J Clin Immunol. 2010 May;30(Suppl 1):S43-9. Review. PubMed, PubMedCentralCrossRef
  16. Kit YY, Starykovych MA, Richter VA, Stoika RS. Detection and characterization of IgG- and sIgA-Abzymes capable of hydrolyzing histone H1. Biochemistry (Mosc). 2008 Aug;73(8):950-6. PubMed
  17. Kit IuIa, Mahorivs’ka IR, Havryliuk AM, Chhop’iak VV, Bilyĭ RO, Stoika RS. Proteolytic activity of blood serum IgG in patients with systemic lupus erythematosis. Ukr Biokhim Zhurn. 2009 May-Jun;81(3):77-83. Ukrainian. PubMed
  18. Chopyak V, Tolstiak Y, Magoryvska I, Bilyy R, Korniy N, Kit Yu, Stoika R. Histone H1/MBP hydrolysing antibodies – novel potential marker in diagnosis of disease severity in systematic lupus erythematosus patients. Health. 2010;2(10):1204-1207. CrossRef
  19. Kit Yu, Starykovych M, Mahorivska I. et al. Novel Serine-Protease Like Catalytic Antibodies with Double Substrate Proteolytic Activity in Human Blood Serum and Colostrums. In. “Serine Proteases: Mechanism, Structure and Evolution”. Eds.: Isamu Chiba and Takao Kamio.  Nova Sci. Publ., Inc., Hauppauge – NY.  2012. P. 71-89.
  20. Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010 May;6(5):280-9. PubMed, CrossRef
  21. Rudofsky UH, Lawrence DA. New Zealand mixed mice: a genetic systemic lupus erythematosus model for assessing environmental effects. Environ Health Perspect. 1999 Oct;107(Suppl 5):713-21. Review. PubMed, PubMedCentral
  22. Dubrovskaya VV, Andryushkova AS, Kuznetsova IA, Toporkova LB, Buneva VN, Orlovskaya IA, Nevinsky GA. DNA-hydrolyzing antibodies from sera of autoimmune-prone MRL/MpJ-lpr mice. Biochemistry (Mosc). 2003 Oct;68(10):1081-8. PubMed
  23. Perry D,  Sang A,  Yin Y,  Zheng Ying-Yi,  Morel L. Murine models of systemic lupus erythematosus. J Biomed Biotechnol. 2011; 2011: 271694. PubMed, CrossRef
  24. Pillet D, Paon M, Vorobiev II, Gabibov AG, Thomas D, Friboulet A. Idiotypic network mimicry and antibody catalysis: lessons for the elicitation of efficient anti-idiotypic protease antibodies. J Immunol Methods. 2002 Nov 1;269(1-2):5-12. PubMed
  25. Li H, Zhang YY, Sun YN, Huang XY, Jia YF, Li D. Induction of systemic lupus erythematosus syndrome in BALB/c mice by immunization with active chromatin. Acta Pharmacol Sin. 2004 Jun;25(6):807-11. PubMed
  26. Kit Y, Bilyy R, Stoika R, Mitina N, Zaichenko A. et al. Immunogenicity and adjuvant properties of novel biocompatible nanoparticles. In: Biocompatible Nanomaterials: Synthesis, Characterization and Applications. Eds: Kumar S.A., Thiagarajan S., Wang S-F. Nova Sci. Publ., Inc., Hauppauge – NY, 2010. P. 209-223.
  27. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5.  PubMed
  28. Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol. 2003 Nov;10(11):882-91. Review. PubMed
  29. Magorivska IB, Bilyy RO, Havrylyuk AM, Chop’yak VV, Stoika RS, Kit YY. Anti-histone H1 IgGs from blood serum of systemic lupus erythematosus patients are capable of hydrolyzing histone H1 and myelin basic protein. J Mol Recognit. 2010 Sep-Oct;23(5):495-502. PubMed, CrossRef
  30. Chaput C, Zychlinsky A. Sepsis: the dark side of histones. Nat Med. 2009 Nov;15(11):1245-6. PubMed, CrossRef
  31. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009 Nov;15(11):1318-21. PubMed, PubMedCentral, CrossRef
  32. Stummvoll GH, Fritsch RD, Meyer B, Hoefler E, Aringer M, Smolen JS, Steiner G. Characterisation of cellular and humoral autoimmune responses to histone H1 and core histones in human systemic lupus erythaematosus. Ann Rheum Dis. 2009 Jan;68(1):110-6. PubMed, CrossRef
  33. Sun XY, Shi J, Han L, Su Y, Li ZG. Anti-histones antibodies in systemic lupus erythematosus: prevalence and frequency in neuropsychiatric lupus. J Clin Lab Anal. 2008;22(4):271-7. PubMed, CrossRef
  34. Kamalanathan AS, Goulvestre C, Weill B, Vijayalakshmi MA. Proteolysis activity of IgM antibodies from rheumatoid arthritis patients’ sera: evidence of atypical catalytic site. J Mol Recognit. 2010 Nov-Dec;23(6):577-82. PubMed, CrossRef
  35. Lacroix-Desmazes S, Bayry J, Kaveri SV, Hayon-Sonsino D, Thorenoor N, Charpentier J, Luyt CE, Mira JP, Nagaraja V, Kazatchkine MD, Dhainaut JF, Mallet VO. High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc Natl Acad Sci USA. 2005 Mar 15;102(11):4109-13. PubMed, PubMedCentral
  36. Lacroix-Desmazes S, Mallet V, Wootla B, Kaveri SV. Catalytic antibodies and severe sepsis. Discov Med. 2005 Apr;5(26):209-12. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.