Ukr.Biochem.J. 2014; Volume 86, Issue 4, Jul-Aug, pp. 18-35


Reactive oxygen species and stress signaling in plants

Yu. E. Kolupaev, Yu. V. Karpets

V. V. Dokuchaev Kharkiv National Agrarian University, Ukraine;

Data on the basic processes and the compartments, involved in formation of reactive oxygen species (ROS) in plant cells, are generalised. The features of structure and regulation of NADPH-oxidase as the one of main enzymatic producers of ROS are characterized. The two-component histidine kinases, ROS-sensitive transcript-factors, ROS-sensitive protein kinase and redox-regulated ionic channels are discussed as the possible sensors of redox-signals in plant cells. The interaction between ROS and other signal mediators, in particular nitric oxide and calcium ions, is discussed. The ROS role as the signal mediators in the development of plant resistance to hyperthermia, osmotic shock and other abiotic stressors is analyzed.

Keywords: , , , , , ,


  1. Tarchevsky I A. Signal systems of plant cells. Moskow: Nauka, 2002. 294 p. (In Russian).
  2. Scandalios JG. The rise of ROS. Trends Biochem Sci. 2002 Sep;27(9):483-6. Review. PubMed, CrossRef
  3. Kaur N, Gupta AK. Signal transduction pathways under abiotic stresses in plant. Curr. Sci. 2005;88:1771-1780.
  4. Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress. J Exp Bot. 2002 May;53(372):1227-36. Review. PubMed, CrossRef
  5. Kolupaev Yu. Ye., Karpets Yu. V. Formation of plants adaptive reactions to abiotic stressors influence. Kyiv: Osnova, 2010. 352 p. (In Russian).
  6. Jaspers P, Kangasjärvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant. 2010 Apr;138(4):405-13. Review. PubMed, CrossRef
  7. Kreslavski V. D., Allakhverdiev S. I., Los D. A., Kuznetsov V. V. Signaling role of reactive oxygen species in plants under stress. Russ. J. Plant Physiol. 2012;59:141–154.
  8. Pucciariello C, Banti V, Perata P. ROS signaling as common element in low oxygen and heat stresses. Plant Physiol Biochem. 2012 Oct;59:3-10. Review. PubMed, CrossRef
  9. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004 Oct;9(10):490-8. Review. PubMed, CrossRef
  10. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012 Feb;39(2):969-87. Epub 2011 May 15. Review. PubMed, CrossRef
  11. Drobot L. B., Samoylenko A. A., Vorotnikov A. V., Tyurin-Kuzmin P. A., Bazalii A. V., Kietzmann T., Tkachuk V. A., Komisarenko S. V. Reactive oxygen species in signal transduction. Ukr. Biokhim. Zhurn. 2013;85(6):209–217.
  12. Møller IM, Sweetlove LJ. ROS signalling–specificity is required. Trends Plant Sci. 2010 Jul;15(7):370-4.  PubMedCrossRef
  13. Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009 Apr;11(4):861-905. Review. PubMed, CrossRef
  14. Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011 Jan;155(1):93-100. PubMed, PubMedCentral, CrossRef
  15. Cvetkovska M, Vanlerberghe GC. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ. 2013 Mar;36(3):721-32.  PubMed, CrossRef
  16. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 2006 Jun ;141(2):357–66. PubMed, PubMedCentral, CrossRef
  17. Moller IM. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Physiol Plant Mol Biol. 2001 Jun;52(1):561-91. PubMed, CrossRef
  18. Minibayeva F, Kolesnikov O, Chasov A, Beckett RP, Lüthje S, Vylegzhanina N, Buck F, Böttger M. Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ. 2009 May;32(5):497-508. PubMed, CrossRef
  19. Kwak JM, Nguyen V, Schroeder JI. The role of reactive oxygen species in hormonal responses. Plant Physiol. 2006 Jun;141(2):323-9. PubMed, PubMedCentral, CrossRef
  20. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell. 2007 Dec;19(12):4022-34. PubMed, PubMedCentral, CrossRef
  21. Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M. ZmMPK5 is required for the NADPH oxidase-mediated selfpropagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot. 2010 Oct;61(15):4399-411.  PubMed, PubMedCentral, CrossRef
  22. Sagi M, Fluhr R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006 Jun;141(2):336-40. PubMed, PubMedCentral, CrossRef
  23. Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol. 2008 Mar;66(4):361-78. PubMed, PubMedCentral, CrossRef
  24. Lee KP, Kim C, Landgraf F, Apel K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10270-5. Epub 2007 May 31. PubMed, PubMedCentral, CrossRef
  25. Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K. Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):672-7. Epub 2006 Dec 29. PubMed, PubMedCentral, CrossRef
  26. Tkachuk V. A., Tyurin-Kuzmin P. A., Belou­sov V. V., Vorotnikov A. V. Hydrogen peroxide as a new second messenger. Biologicheskie Membrany. 2012;29(1–2):21–37. (In Russian).
  27. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007 Jan 12;282(2):1183-92. PubMed, CrossRef
  28. Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15681-6.  PubMed, PubMedCentral, CrossRef
  29. Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002 May;53(372):1331-41. Review. PubMed, CrossRef
  30. Kuzniak E, Skłodowska M. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J Exp Bot. 2004 Mar;55(397):605-12. PubMed, CrossRef
  31. Ogawa K, Kanematsu S, Asada K. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 1997 Oct;38(10):1118-26. PubMed, CrossRef
  32. Ogawa K., Kanematsu S., Asada K. Intra and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol. 1996;37(6):790-9. CrossRef
  33. Palma JM, Lopez-Huertas E, Corpas FJ, Sandalio LM, Gomez M, del Rio LA. Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol. Plant. 1998;104(4):720-6. CrossRef
  34. Petrov VD, Van Breusegem F. Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants. 2012;2012:pls014. PubMed, PubMedCentral, CrossRef
  35. Menshchikova E. B., Zenkov N. K. Properties and functions of NADPH oxidases of mammal. Uspehi Sovremennoy Biologii. 2006;12(1):97–112. (In Russian).
  36. Glyan’ko AK, Ischenko AA. Structural and functional characteristics of plant NADPH oxidase: A review. Appl Biochem Microbiol. 2010;46(5):463-471. PubMed, CrossRef
  37. Torres MA, Dangl JL, Jones JD. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA. 2002 Jan 8;99(1):517-22. PubMed, PubMedCentral, CrossRef
  38. Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiol. 2011 Sep;157(1):229-41. PubMedPubMedCentral, CrossRef
  39. Demidchik V. Reactive oxygen species and oxidative stress in plants. Plant Stress Physiology. Ed. S. Shabala. CAB International, 2012. P. 24-58.  CrossRef
  40. Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012 Jan;17(1):9-15. Review. PubMed, CrossRef
  41. Nühse TS, Bottrill AR, Jones AM, Peck SC. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 2007 Sep;51(5):931-40. PubMed, PubMedCentral, CrossRef
  42. Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008 Feb 29;319(5867):1241-4. PubMed, CrossRef
  43. Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, Sato M, Shimizu T. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem. 2010 Jan 8;285(2):1435-45. PubMed, PubMedCentral, CrossRef
  44. Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem. 2008 Apr 4;283(14):8885-92. PubMed, CrossRef
  45. Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta. 2012 Feb;1823(2):398-405. PubMed, CrossRef
  46. Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell. 2009 Aug;21(8):2357-77. PubMed, PubMedCentral, CrossRef
  47. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci. 2011 Jun;16(6):300-9. Epub 2011 Apr 7. Review. PubMed, CrossRef
  48. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373-99. Review. PubMed, CrossRef
  49. Kanesaki Y, Yamamoto H, Paithoonrangsarid K, Shoumskaya M, Suzuki I, Hayashi H, Murata N. Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant J. 2007 Jan;49(2):313–324. PubMed, CrossRef
  50. Los D. A. Sensor systems of cyanobacteria.  Moscow: Nauchniy mir, 2010. 218 p. (In Russian).
  51. Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 2006 Jan;140(1):249-62.  PubMed, PubMedCentral, CrossRef
  52. Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 2007 Apr;50(1):128-39. PubMed, CrossRef
  53. Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol. 2011 Mar;153(2):175-90. Review. PubMed, CrossRef
  54. Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell. 2003 Jun 27;113(7):935-44. PubMed, CrossRef
  55. Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot. 2006 Aug;98(2):279-88. Review. PubMed, PubMedCentral, CrossRef
  56. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Curr Opin Plant Biol. 2007 Jun;10(3):310-6. Review. PubMed, CrossRef
  57. Liu HC, Liao HT, Charng YY. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 2011 May;34(5):738-51. PubMed, CrossRef
  58. Gupta R, Luan S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 2003 Jul;132(3):1149-52. PubMed, PubMedCentral, CrossRef
  59. Karimova FG, Petrova NV. Effect of H2O2 on tyrosine phosphorylation of pea proteins. Russ J Plant Physiol. 2007;54(3):322–328. CrossRef
  60. Pitzschke A, Hirt H. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol. 2006 Jun;141(2):351-6. PubMed, PubMedCentral, CrossRef
  61. Mazid M., Ahmed K. T., Mohammad F. Role of Nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: A synergistic signalling approach. J. Stress Physiol. Biochem. 2011;7(2):34–74.
  62. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000 Aug 17;406(6797):731-4. PubMed
  63. Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y. The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol. 2011 Jan;155(1):553-61. PubMed, PubMedCentral, CrossRef
  64. Demidchik V, Shabala SN, Davies JM. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J. 2007 Feb;49(3):377-86. PubMed, CrossRef
  65. Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci. 2010 May 1;123(Pt 9):1468-79. PubMed, CrossRef
  66. Wong CM, Cheema AK, Zhang L, Suzuki YJ. Protein carbonylation as a novel mechanism in redox signaling. Circ Res. 2008 Feb 15;102(3):310-8. PubMed, CrossRef
  67. Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012 Feb;35(2):259-70. Review. PubMed, CrossRef
  68. Rivero RM, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009 Jul;150(3):1530–1540. PubMedPubMedCentralCrossRef
  69. Mori IC, Schroeder JI. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 2004 Jun;135(2):702-8. Review. PubMed, PubMedCentral, CrossRef
  70. Zhang A, Jiang M, Zhang J, Tan M, Hu X. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol. 2006 Jun;141(2):475-87. PubMed, PubMedCentral
  71. Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants. Plant Cell Environ. 2008 May;31(5):622-31. Review. PubMed
  72. Xu MJ, Dong JF, Zhang XB. Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci. China. Ser. C: Life Sci. 2008;51:676-686.
  73. Tewari RK, Hahn EJ, Paek KY. Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep. 2008 Mar;27(3):563-73. PubMed
  74. Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L. Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol. 2009 Mar;181(4):860-70. PubMed,  CrossRef
  75. Lu D, Zhang X, Jiang J, An GY, Zhang LR, Song CP. NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. J. Plant Physiol. Mol. Biol. 200;31:62–70.
  76. Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol. 2007;175(1):36-50. PubMed, CrossRef
  77. Viktorova LV, Maksyutova NN, Trifonova TV, Andrianov VV. Hydrogen peroxide and nitric oxide generation induced by nitrate and nitrite operation into the apoplast of wheat leaves. Biochemistry (Moscow). 2010;75:117–124.
  78. Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J. Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot. 2008;62(1):60-68. CrossRef
  79. Reiter CD, Teng RJ, Beckman JS. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem. 2000 Oct 20;275(42):32460-6. PubMed, CrossRef
  80. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813-7. PubMed, PubMedCentral, CrossRef
  81. Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I. Nitric oxide evolution and percepton. J Exp Bot. 2008;59:25–35.
  82. Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol. 2008;59(1):21-39. Review. PubMed, CrossRef
  83. Karpets YuV, Kolupaev YuE, Yastreb TO. Effect of sodium nitroprusside on heat resistance of wheat coleoptiles: dependence on the formation and scavenging of reactive oxygen species. Russ J Plant Physiol. 2011;58(6):1027–1033. CrossRef
  84. Glyan’ko AK, Vasil’eva GG, Ischenko AA, Mironova NV, Alekseenko AL. The NADPH oxidase activity of pea seedling roots in rhizobial infection depending on abiotic and biotic factors.  Appl Biochem Microbiol. 2010;46(4):438–443. PubMedCrossRef
  85. Straus MR, Rietz S, Themaat EVL, Bartsch M, Parker JE. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis.  Plant J. 2010;62(4):628–640. PubMed, CrossRef
  86. Piotrovskii MS, Shevyreva TA, Zhest­kova IM, Trofimova MS. Activation of plasmalemmal NADPH oxidase in etiolated maize seedlings exposed to chilling tempera­tures. Russ J Plant Physiol. 2011 mar;58(2):290–298. CrossRef
  87. Kolupaev YuE, Oboznyi AI, Shvidenko NV. Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings. Russ. J Plant Physiol. 2013 Feb;60(2):227–234. CrossRef
  88. Kolupaev YuYe, Karpets YuV, Kosakivska IV. The importance of reactive oxygen species in the induction of plant resistance to heat stress. Gen Appl Plant Physiol. 2008;34(3–4):251–266.
  89. Kolupaev YuE, Oboznyi OI. Participation of the active oxygen forms in the induction of ascorbate peroxidase and guaiacol peroxidase under heat hardening of wheat seedlings. Ukr Biokhim Zhurn. 2012 Nov-Dec;84(6):131-8. Russian.  PubMed
  90. Oboznyi OI, Kolupaev YuE. Participation of the enzymatic systems generating reactive oxygen species, in formation cross-tolerances of plantlets of wheat to the hyperthermia and osmotic shock. Fiziologiya i Biokhimia Kulturnykh Rastenii. 2012;44(4):347-354. (In Russian).
  91. Jiang M, Zhang J. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta. 2002 Oct;215(6):1022-30. PubMed, CrossRef
  92. Leshem Y., Seri L., Levine A. Induction of phosphatidylinositol 3-kinase-mediated endo­cytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 2007 May;51(2):185–197. CrossRef
  93. Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺homeostasis in Arabidopsis under salt stress. J Exp Bot. 2012 Jan;63(1):305-17. Epub 2011 Oct 6. PubMed, CrossRef
  94. Vayner AO, Kolupaev YuE, Yastreb TO. Participation of hydrogen peroxide in induction of proline accumulation in millet plants under action of NaCl. The Bulletin of Kharkiv National Agrarian University. Series Biology. 2013;(Is. 2 (29)):32–38. (In Russian).
  95. Oboznyi AI, Kolupaev YuE, Vayner AA, Yastreb TO. The role of superoxide dismutase in inducing of wheat seedlings tolerance to osmotic shock. J. Stress Physiol. Biochem. 2013; 9(Is. 3):251–261.
  96. Morita S, Kaminaka H, Masumura T, Tanaka K. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress: the involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol. 1999 Jan;40(4):417–422. CrossRef
  97. Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 2010 Mar;61(6):1041-52. Review. PubMed, CrossRef
  98. Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV. Stress sensors and signal transducers in cyanobacteria. Sensors (Basel). 2010;10(3):2386-415. Review. PubMed, PubMedCentral, CrossRef
  99. Bartoli CG, Casalongueb CA, Simon­tacchia M, Marquez-Garciac B, Foyer CH. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot. 2013 Oct;94:73–88. CrossRef
  100. Wilkinson S, Davies WJ. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 2010 Apr;33(4):510-25. Review. PubMed, CrossRef
  101. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 2009 Jun;150(2):801-14.  PubMed, PubMedCentral, CrossRef
  102. Queval G, Hager J, Gakière B, Noctor G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J Exp Bot. 2008;59(2):135-46. PubMed, CrossRef
  103. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 2006 Jun;141(2):436-45. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.