Ukr.Biochem.J. 2013; Volume 85, Issue 4, Jul-Aug, pp. 82-89

doi: http://dx.doi.org/10.15407/ubj85.04.082

Influence of methanol on the content of NAD(P)H, free amino acids and protein in the cells of Chlamydomonas reinhartdii

S. S. Stepanov, E. K. Zolotareva

Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv;
e-mail: serhiy1986@ukr.net

It is known that the addition of methanol to the culture medium stimulates the photosynthetic productivity of some species of microalgae, but its influence on the biochemical composition of the biomass has not been investigated. The aim of the present work is to determine the effect of methanol (50 mM) on the content of free amino acids, solub­le proteins and reduced nicotinamide coenzyme NAD(P)H in C. reinhartdii cells. It is shown that in case of illumination of C. reinhardtii methanol raises intracellular content of NAD(P)H four times more efficiently than in the darkness. Total content of free amino acids is increased and their ratio is changed. The concentration of glutamic acid, glutamine, alanine, serine and tyrosine also increases. The concentration of valine and methionine is reduced. Growth of culture with methanol is followed by an increase in the content of intracellular protein by 30% after 20 hours of cultivation. The obtained data indicate that methanol stimulates growth of C. reinhardtii, not only as a result of additional carbon utilization, but also due to improved nitrogen assimilation and the impact on the energy metabolism of cells.

Keywords: , , ,


References:

  1. Choi WY, Oh SH, Seo YC, Kim GB, Kang DH, Lee SY, Jung KH, Cho JS, Ahn JH, ChoiGP, Lee HY. Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol. Bioprocess Eng. 2011 Sep;16(5):946–955. CrossRef
  2. Nonomura AM, Benson AA. The path of carbon in photosynthesis: improved crop yields with methanol. Proc Natl Acad Sci USA. 1992 Oct 15;89(20):9794-8. PubMed, PubMedCentral, CrossRef
  3.  Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: role of the concentration and frequence of administration. J Biotechnol. 1999 Apr;70(1-3):357-362. CrossRef
  4. Theodoridou A, Dörnemann D, Kotzabasis K. Light-dependent induction of strongly increased microalgal growth by methanol. Biochim Biophys Acta. 2002 Nov 14;1573(2):189-98. PubMedCrossRef
  5. Fall R, Benson A.  Leaf methanol — the simplest natural product from plants. Trends Plant Sci. 1996;1(9):296-301.  CrossRef
  6. Madhaiyan M, Poonguzhali S, Sundaram SP, Sa TM. A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ Exp Bot. 2006 Aug;57(1-2):168-176.  CrossRef
  7. Stepanov SS, Zolotareva OK. Methanol metabolism in plants. Ukr Biokhim Zhurn. 2011 Jul-Sep;83(4):5-15. Review. Ukrainian. PubMed
  8. Bishop NI, Senger H. Preparation and photosynthetic properties of synchronous cultures of Scenedesmus / Methods in Enzymology. New York: Acad. Press, 1971;23(pt. A):53-66.  CrossRef
  9.  Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G. In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol. 2002 Aug;129(4):1921-8. PubMed, PubMedCentral, CrossRef
  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
  11. Bölling C, Fiehn O. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 2005 Dec;139(4):1995-2005. PubMed, PubMedCentral, CrossRef
  12. Whitehouse DG, Ludwig WJ, Walker DA. Participation of the Mehler reaction and catalase in the oxygen exchange of chloroplast preparations. J Exp Bot. 1971;22(4):772-791. CrossRef
  13. Kisaki T, Tolbert NE. Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Plant Physiol. 1969 Feb;44(2):242-50. PubMed, PubMedCentral, CrossRef
  14. Shen CH, Yeh KW. Hydrogen peroxide mediates the expression of ascorbate-related genes in response to methanol stimulation in Oncidium. J Plant Physiol. 2010 Mar 15;167(5):400-7. PubMed, CrossRef
  15. Stepanov SS, Zolotareva EK. The effect of methanol on photosynthetic activity and productivity of Chlamydomonas reinhardtii dang. (Chlorophyta). Algologia. 2011;21(2):178-189.
  16. Downie A, Miyazaki S, Bohnert H, John P, Coleman J, Parry M, Haslam R. Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry. 2004 Aug;65(16):2305-16. PubMed, CrossRef
  17. Stepanov SS, Biliavs’ka NO, Zolotareva EK. Methanol effects on cellular structure and catalase activity in Chlamydomonas reinhardtii. Rep Nat Acad Sci Ukraine. 2012;(4):162-167.
  18. Florencio FJ, Vega JM. Separation, purification, and characterization of two isoforms of glutamine synthetase from Chlamydomonas reinhardii. Z. Naturforsch. 1983;38(с):531-538.
  19. Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardeström P, Moritz T, Samuelsson G. A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol. 2010 Sep;154(1):187-96. PubMed, PubMedCentral, CrossRef
  20. Hanson AD, Roje S. One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52(1):119-137. PubMed, CrossRef
  21. Ho CL, Saito K. Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids. 2001;20(3):243-59. PubMed, CrossRef
  22.  Gout E, Aubert S, Bligny R, Rébeillé F, Nonomura AR, Benson AA, Douce R. Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol. 2000 May;123(1):287-96. PubMed, PubMedCentral, CrossRef
  23. Harris EH. / The Chlamydomonas Sourcebook: Organellar and Metabolic Processes.  Academic press Inc, Canada, 2009. P. 271-275.
  24. Kovács Z, Simon-Sarkadi L, Vashegyi I, Kocsy G. Different accumulation of free amino acids during short- and long-term osmotic stress in wheat. Sci World J. 2012;2012:216521. PubMed, PubMedCentral, CrossRef
  25. Mirakhori M, Paknejad F, Moradi F, Ardakani M, Zahedi H, Nazeri P. Effect of Drought Stress and Methanol on Yield and Yield Components of Soybean Max (L 17).  Am J Biochem Biotechnol. 2009;5(4):162-169. CrossRef
  26. Cossins EA. The utilization of carbon-1 compounds by plants: I. The metabolism of methanol-C14 and its role in amino acid biosynthesis. Can J Biochem. 1964:42(12):1739-1802. CrossRef
  27. Singh BK, Shaner DL. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. Plant Cell. 1995 Jul;7(7):935-944. PubMed, PubMedCentral, CrossRef
  28. Waffenschmidt S, Woessner JP, Beer K, Goodenough UW. Isodityrosine cross-linking mediates insolubilization of cell walls in Chlamydomonas. Plant Cell. 1993 Jul;5(7):809-20. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.