Ukr.Biochem.J. 2015; Volume 87, Issue 5, Sep-Oct, pp. 113-123

doi: https://doi.org/10.15407/ubj87.05.113

Interconnection between nitric oxide formation and hypersensitivity parameters under guinea pig model of acute asthma with multiple challenges

O. O. Parilova, S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: elenparil@gmail.com

An immunoregulatory role of nitric oxide (NO) in the development of adaptive immune responses associated with allergic diseases is very important. The present study extended these observations by the examination of the reciprocal changes in characteristic immunologic parameters of the disease and NO level of bronchoalveolar lavage (BAL) cells under guinea pig model of acute asthma with multiple challenges. Development of guinea pig Th2 mediated asthma was accompanied by increasing the level of allergic markers: ovalbumin (OVA) specific IgG and IL-4. We demonstrated that the infiltrate of airway cells contributes to NO synthesis in the respiratory tract during allergic inflammation. The level of intracellular NO formation significantly correlated with plasma allergen specific IgG value in OVA-induced asthma. The presented data evidence that the elevated intracellular NO level in BAL fluid may reflect a nitrosative stress in respiratory tract in general, when allergic asthma exacerbation is present.

Keywords: , , , ,


References:

  1. Rennard SI, Farmer SG. Exacerbations and progression of disease in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1(2):88-92. Review. PubMed, CrossRef
  2. Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006 Sep;118(3):551-9; quiz 560-1. Review. PubMed
  3. Andreadis AA, Hazen SL, Comhair SA, Erzurum SC. Oxidative and nitrosative events in asthma. Free Radic Biol Med. 2003 Aug 1;35(3):213-25. Review. PubMed, CrossRef
  4. Lane C, Knight D, Burgess S, Franklin P, Horak F, Legg J, Moeller A, Stick S. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax. 2004 Sep;59(9):757-60. PubMed, PubMedCentral, CrossRef
  5. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999 May 5;1411(2-3):217-30. Review. PubMed, CrossRef
  6. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001 Oct;2(10):907-16. Review. PubMed, CrossRef
  7.  Kolb H, Kolb-Bachofen V. Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today. 1998 Dec;19(12):556-61. Review. PubMed, CrossRef
  8.  Suschek CV, Schnorr O, Kolb-Bachofen V. The role of iNOS in chronic inflammatory processes in vivo: is it damage-promoting, protective, or active at all? Curr Mol Med. 2004 Nov;4(7):763-75. Review. PubMed, CrossRef
  9.  Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003 Dec;54(4):469-87. Review. PubMed
  10. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004 Jul;84(3):731-65. Review. PubMed, CrossRef
  11.  Warner RL, Paine R 3rd, Christensen PJ, Marletta MA, Richards MK, Wilcoxen SE, Ward PA. Lung sources and cytokine requirements for in vivo expression of inducible nitric oxide synthase. Am J Respir Cell Mol Biol. 1995 Jun;12(6):649-61. PubMed, CrossRef
  12.  Barnes PJ, Dweik RA, Gelb AF, Gibson PG, George SC, Grasemann H, Pavord ID, Ratjen F, Silkoff PE, Taylor DR, Zamel N. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest. 2010 Sep;138(3):682-92. Review. PubMed, CrossRef
  13. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL, Taylor DR; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011 Sep 1;184(5):602-15. PubMed, PubMedCentral, CrossRef
  14. Akkoc T. Animal models of asthma. Marmara Pharm J. 2010;3(14):104-111. CrossRef
  15. Smith N, Broadley KJ. Optimisation of the sensitisation conditions for an ovalbumin challenge model of asthma. Int Immunopharmacol. 2007 Feb;7(2):183-90. PubMed, CrossRef
  16.  Strijdom H, Muller C, Lochner A. Direct intracellular nitric oxide detection in isolated adult cardiomyocytes: flow cytometric analysis using the fluorescent probe, diaminofluorescein. J Mol Cell Cardiol. 2004 Oct;37(4):897-902. PubMed, CrossRef
  17. Meurs H, Santing RE, Remie R, van der Mark TW, Westerhof FJ, Zuidhof AB, Bos IS, Zaagsma J. A guinea pig model of acute and chronic asthma using permanently instrumented and unrestrained animals. Nat Protoc. 2006;1(2):840-7. PubMed, CrossRef
  18. Duschl A, Müller T, Sebald W. Antagonistic mutant proteins of interleukin-4. Behring Inst Mitt. 1995 Jun;(96):87-94. Review. PubMed
  19. Di Valentin E, Crahay C, Garbacki N, Hennuy B, Guéders M, Noël A, Foidart JM, Grooten J, Colige A, Piette J, Cataldo D. New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol. 2009 Feb;296(2):L185-97. PubMed, CrossRef
  20. Ghosh S, Erzurum SC. Nitric oxide metabolism in asthma pathophysiology. Biochim Biophys Acta. 2011 Nov;1810(11):1008-16. Review. PubMed, PubMedCentral, CrossRef
  21. Guo FH, Comhair SA, Zheng S, Dweik RA, Eissa NT, Thomassen MJ, Calhoun W, Erzurum SC. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J Immunol. 2000 Jun 1;164(11):5970-80. PubMed, CrossRef
  22. Hamid Q, Springall DR, Riveros-Moreno V, Chanez P, Howarth P, Redington A, Bousquet J, Godard P, Holgate S, Polak JM. Induction of nitric oxide synthase in asthma. Lancet. 1993 Dec 18-25;342(8886-8887):1510-3. PubMed, CrossRef
  23. Xiong Y, Karupiah G, Hogan SP, Foster PS, Ramsay AJ. Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. J Immunol. 1999 Jan 1;162(1):445-52. PubMed
  24. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225-8. PubMed, CrossRef
  25. del Pozo V, de Arruda-Chaves E, de Andrés B, Cárdaba B, López-Farré A, Gallardo S, Cortegano I, Vidarte L, Jurado A, Sastre J, Palomino P, Lahoz C. Eosinophils transcribe and translate messenger RNA for inducible nitric oxide synthase. J Immunol. 1997 Jan 15;158(2):859-64. PubMed
  26. Webb JL, Polak JM, Evans TJ. Effect of adhesion on inducible nitric oxide synthase (iNOS) production in purified human neutrophils. Clin Exp Immunol. 2001 Jan;123(1):42-8. PubMed, PubMedCentral, CrossRef
  27.  Lu L, Bonham CA, Chambers FG, Watkins SC, Hoffman RA, Simmons RL, Thomson AW. Induction of nitric oxide synthase in mouse dendritic cells by IFN-gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis. J Immunol. 1996 Oct 15;157(8):3577-86. PubMed
  28. Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC, Murphy KM. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity. 1998 Nov;9(5):745-55. PubMed, CrossRef
  29. Curran AD. The role of nitric oxide in the development of asthma. Int Arch Allergy Immunol. 1996 Sep;111(1):1-4. Review. PubMed, CrossRef
  30.  Uetani K, Thomassen MJ, Erzurum SC. Nitric oxide synthase 2 through an autocrine loop via respiratory epithelial cell-derived mediator. Am J Physiol Lung Cell Mol Physiol. 2001 Jun;280(6):L1179-88. PubMed
  31. Chang RH, Feng MH, Liu WH, Lai MZ. Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology. 1997 Mar;90(3):364-9. PubMed, PubMedCentral, CrossRef
  32. Zurawski G, de Vries JE. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994 Jan;15(1):19-26. Review. PubMed, CrossRef
  33. Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 1993 Mar 18;362(6417):245-8. PubMed, CrossRef
  34. Nacher M, Singhasivanon P, Kaewkungwal J, Silachamroon U, Treeprasertsuk S, Tosukhowong T, Vannaphan S, Looareesuwan S. Relationship between reactive nitrogen intermediates and total immunoglobulin E, soluble CD21 and soluble CD23: comparison between cerebral malaria and nonsevere malaria. Parasite Immunol. 2002 Aug;24(8):395-9. PubMed, CrossRef
  35. Al-Laith M, Weyer A, Havet N, Dumarey C, Vargaftig BB, Bachelet M. Immunoglobulin-G-dependent stimulation of guinea pig lung mast cells and macrophages. Allergy. 1993 Nov;48(8):608-14. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.