Ukr.Biochem.J. 2013; Volume 85, Issue 4, Jul-Aug, pp. 5-19

doi: http://dx.doi.org/10.15407/ubj85.04.005

Microbial α-amylases: physico-chemical properties, substrate specificity and domain structure

K. V. Avdiyuk, L. D. Vаrbanets

Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine;
e-mail: varbanets@serv.imv.kiev.ua

The current literature data on producers, physico-chemical properties and substrate specificity of α-amylases produced by microbes from different taxonomic groups such as bacteria, fungi and yeasts are discussed in the survey. Synthesis of α-amylase majority is an inducible process which is stimulated in the presence of starch or products of its hydrolysis. It is possible to increase enzymes activity level by optimization of cultivation conditions of strains-producers. α-Аmylases, isolated from different sources are distinguished in their physico-chemical properties, particularly in their molecular weights, рН- and thermooptimums, inhibitors and activators. The enzymes hydrolyse soluble starch, аmylose, аmylopectin, glycogen, maltodextrins, α- and β-cyclodextrins and other carbohydrate substrates. It is well known that α-amylases belong to GH-13 family of glycosyl-hydrolases, which contain the catalytic domain A as (β/α)8-barrel. In addition to domain А, α-аmylases contain two other domains: В and С, which are localized approximately on opposite sides of (β/α)8-barrel. Most of the known α-amylases contain calcium ion, which is located on the surface between domains А and В and plays an important role in stability and activity of the enzyme.

Keywords: , , ,


References:

  1. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. Advances in microbial amylases. Biotechnol Appl Biochem. 2000 Apr;31(Pt 2):135-52. Review. PubMed, CrossRef
  2. Ikramul-Haq, Javed MM, Hameed U, Adnan F. Kinetics and thermodynamic studies of alpha amylase from Вacillus licheniformis mutant.  Pak J Bot.  2010;42(5):3507-3516.
  3. Hmidet N, Maalej H, Haddar A, Nasri M. A novel alpha-amylase from Bacillus mojavensis A21: purification and biochemical characterization. Appl Biochem Biotechnol. 2010 Oct;162(4):1018-30. PubMed, CrossRef
  4. Al-Quadan F, Akel H, Natshi R. Characteristics of a novel, highly acid- and thermo-stable amylase from thermophilic Bacillus strain HUTBS62 under different environmental conditions. Ann Microbiol. 2011;61(4):887-892. CrossRef
  5. Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, Pandey A. Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Appl Biochem Biotechnol. 2009 Sep;158(3):653-62. PubMed, CrossRef
  6. Varbanets’ LD, Myshak KV, Matseliukh OV, Hudzenko OV, Safronova LA, Prykhod’ko VO. Alpha-amylases of Bacillus subtilis. Mikrobiol Zhurn. 2006 Mar-Apr;68(2):30-8. Ukrainian. PubMed
  7. Riaz A, Qadar S, Anwar A, Iqbal S, S Bano S. Production and characterization of thermostable α-amylase from a newly isolated strain of Bacillus subtilis KIBGE-HAR. Internet J Microbiol. 2009;6(1). CrossRef
  8. Mohamed SA, Azhar EI, Ba-Akdah MM, Tashkandy NR, Kumosani TA. Production, purification and characterization of α-amylase from Trichoderma harzianum grown on mandarin peel. Afr J Microbiol Res. 2011;5(9):1018-1028.  CrossRef
  9. Varbanets LD, Avdiyuk KV, Borzova NV. Microbial α-amylases: isolation, purification and practical usage. Biotekhnolohiia. 2008;1(2):39-51.
  10. Asgher M, Javaid Asad M, Rahman SU, Legge RL. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng. 2007 Apr;79(3):950-955. CrossRef
  11.  Arikan B. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresour Technol. 2008 May;99(8):3071-6. PubMed, CrossRef
  12. Talekar S, Patil J. Production and characterization of thermostable alpha amylase by Bacillus stearothermophilus NCIM 2922. J Cell Tissue Res. 2012;12(1):3037-42.
  13. Haseltine C, Rolfsmeier M, Blum P. The glucose effect and regulation of alpha-amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1996 Feb;178(4):945-50. PubMed, PubMedCentral
  14. Prakash O, Jaiswal N. alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol. 2010 Apr;160(8):2401-14. Review. PubMed, CrossRef
  15. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. α-Amylases from microbial sources—an overview on recent developments. Food Technol Biotechnol. 2006;44(2):173-184.
  16. Yang H, Liu L, Li J, Du G, Chen J. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. Microb Cell Fact. 2011 Oct 7;10:77. PubMed, PubMedCentral, CrossRef
  17. Rao D, Swamy A, SivaRamaKrishna G. Bioprocess technology Strategies, Production and Purification of Amylases: An overview.  Internet J. Genomics Proteomics. 2007;2(2). CrossRef
  18. Morozkina EV, Slutskaya ES, Fedorova TV, Golubeva LI, Koroleva OV, Tugay TI. Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review). Appl Biochem Microbiol. 2010;46(1):1-14.  CrossRef
  19. Kuddus M., Roohi, Arif JM, Ramteke PW. Structural adaptation and biocatalytic prospective of microbial cold-active α-amylase. AJMR. 2012;6(2):206-213. CrossRef
  20. Liu J, Zhang Z, Dang H, Lu J, Cui Z. Isolation and characterization of a cold-active amylase from marine Wangia sp. C52.  AJMR. 2011 May;5(10):1156-1162.
  21. Varalakshmi KN, Kumudini BS, Nandini BN, Solomon J, Suhas R, Mahesh B, Kavitha AP. Production and characterization of alpha-amylase from Aspergillus niger JGI 24 isolated in Bangalore. Pol J Microbiol. 2009;58(1):29-36. PubMed
  22. Kiran Kumar V, Ravi Sankar N, Shailaja R,  Saritha K, Siddhartha E, Ramya S, Giridhar D, Sahaja RV. Purification and characterization of α-amylase produced by Aspergillus niger using banana peels. J Cell Tissue Res. 2011;11(2):2775-2780.
  23. Padmini ND, Bhattacharya S, Das A,  and Subbaramiah Rajan SS. Solid-State Fermentation and Characterization of α-Amylase from a Rhizospheric Isolate of Aspergillus flavus associated with Mangifera indica. Ann Biol Res. 2012;3(8):4082-4090.
  24. Varbanets’ LD, Avdiiuk KV, Borzova NV, Kharkevych OS, Zhdanova NM, Seyfullina II, Martsynko OE, Piesarohlo OH. Characteristics of Aspergillus sp. 55 alpha-amylase. Mikrobiol Zhurn. 2009 May-Jun;71(3):3-10. Ukrainian. PubMed
  25. Metin K., Koc Ö., Ateslier Z. B. B., Biyik H. H. Purification and characterization of a-amylase produced by Penicillium citrinum HBF62. Afr J Biotechnol. 2010;9(45):7692-7701.
  26. Galich IP. Amylase of microorganisms. K. Naukova dumka, 1987. 192p.
  27. Liu XD, Xu Y. A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour Technol. 2008 Jul;99(10):4315-20. PubMed, CrossRef
  28. Valaparla VK. Purification and properties of a thermostable α-amylase by Acremonium Sporosulcatum. Int J Biotechnol Biochem. 2010;6(1):25-34.
  29. Stamford TL, Stamford NP, Coelho LC, Araújo JM. Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol. 2001 Jan;76(2):137-41. PubMedCrossRef
  30.  Saxena RK, Dutt K, Agarwal L, Nayyar P. A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresour Technol. 2007 Jan;98(2):260-5. PubMed, CrossRef
  31.  Yang CH, Liu WH.  Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca.  Enzyme Microb Technol. 2004;35(2-3):254-260. CrossRef
  32. Rao KS, Ellaiah P, Biradar KV. Purification and characterization of thermostable amylase from a strain of thermoactionomyces thalpophilus KSV17. RGUHS J Pharm Sci. 2012 Mar;2(1):83-89. CrossRef
  33. Abe A, Tonozuka T, Sakano Y, Kamitori S. Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol. 2004 Jan 16;335(3):811-22. PubMed, CrossRef
  34. Iefuji H, Chino M, Kato M, Iimura Y. Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J. 1996 Sep 15;318(Pt 3):989-96. PubMed, PubMedCentral
  35. Hasan K, Ismaya WT, Kardi I, Andiyana Y, Kusumawidjaya S, Ishmayana S, Subroto T, Soemitro S. Proteolysis of alpha-amylase from Saccharomycopsis fibuligera: characterization of digestion products. Biologia. 2008;63(6):1044-1050.  CrossRef
  36. Kammoun R, Naili B, Bejar S. Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour Technol. 2008 Sep;99(13):5602-9. PubMed, CrossRef
  37. Ghorbel RE, Maktouf S, Massoud EB, Bejar S, Chaabouni SE. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability. Appl Biochem Biotechnol. 2009 Apr;157(1):50-60. PubMed, CrossRef
  38. Dheeran P, Kumar S, Jaiswal YK, Adhikari DK. Characterization of hyperthermostable alpha-amylase from Geobacillus sp. IIPTN. Appl Microbiol Biotechnol. 2010 May;86(6):1857-66. PubMed, CrossRef
  39. Fogarty WM, Bourke AC, Kelly CT, Doyle EM. A constitutive maltotetraose-producing amylase from Pseudomonas sp. IMD 353. Appl Microbiol Biotechnol. 1994;42(2-3):198-203. CrossRef
  40. Kubrak OI, Lushchak VI. Production and properties of α-amylase from Bacillus sp. BKL40. Biotekhnolohiia. 2009;2(1):69-79.
  41. Avdiyuk KV, Varbanets LD. Optimization of cultivation conditions of the alpha-amylase producer Bacillus subtilis 147. Mikrobiol Zhurn. 2008 Jan-Feb;70(1):10-6. PubMed
  42. Niu D, Zuo Z, Shi GY, Wang ZX. High yield recombinant thermostable alpha-amylase production using an improved Bacillus licheniformis system. Microb Cell Fact. 2009 Oct 31;8:58. PubMed, PubMedCentral, CrossRef
  43. Rajagopalan G, Krishnan C. Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol. 2008 May;99(8):3044-50. PubMed
  44. Goyal N, Gupta J., Soni SK. A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol. 2005;37(7):723-734. CrossRef
  45. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38(11):1599-1616. CrossRef
  46. Kuriki T, Hondoh H, Matsuura Y. The conclusive proof that supports the concept of the alpha-amylase family: structural similarity and common catalytic mechanism. Biologia (Bratislava). 2005;60(Suppl. 16):13-16.
  47. Najafi MF, Kembhavi A. One step purification and characterization of an extracellular α-amylase from marine Vibrio sp. Enzyme Microb Technol. 2005 Mar;36(4):535-539. CrossRef
  48.  Ramachandran S, Patel AK, Nampoothiri KM, Chandran S, Szakacs G, Soccol CR, Pandey A. Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol. 2004;47(2):309-317.
  49. Anto H, Trivedi U, Patel K. Alpha Amylase Production by Bacillus cereus MTCC 1305 Using Solid-State Fermentation. Food Technol Biotechnol. 2006;44(2):241-245.
  50. Ikram-ul-Haq, Shamim N, Ashraf H, Ali S, Qadeer MA. Effect of surfactants on the biosynthesis of alpha amylase by Bacillus subtilis GCBM-25. Pak J Bot. 2005;37(2):373-379.
  51. Bhardwaj S., Bhattacharya S., Anand S., Das A. Production and characterization of amylase from a mangrove isolate of Aspergillus flavus using sugarcane bagasse in solid state fermentation. Amer Euras J Agric Environ Sci. 2011;3:171-181.
  52. Annamalai N, Thavasi R, Vijayalakshmi S, Balasubramanian T. Extraction, purification and characterization of thermostable, alkaline tolerant α-amylase from Bacillus cereus. Indian J Microbiol. 2011 Oct;51(4):424-9. PubMedPubMedCrossRef
  53.  Uma Maheswar Rao JL, Satyanarayana T. Purification and Characterization of a Hyperthermostable and High Maltogenic α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol. 2007 Aug;142(2):179-93. PubMed, CrossRef
  54.  Mishra S., Behera N. Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. Afr J Biotechnol. 2008;7(18):3326-3331.
  55. Amanullah A, Leonildi E, Nienow AW, Thomas CR. Dynamics of mycelia aggregation in cultures of Aspergillus oryzae. Bioprocess Biosyst Eng. 2001;24(2):101-107. CrossRef
  56. Akcan N. High level production of extracellular α-amylase from Bacillus licheniformis ATCC 12759 in submerged fermentation. Rom Biotechnol Lett. 2011;16(6):6833–6840.
  57. de Souza PM, de Oliveira Magalhães P. Application of microbial α-amylase in industry – A review. Braz J Microbiol. 2010 Oct;41(4):850-61. PubMed, PubMedCentral, CrossRef
  58. Khan JA, Briscoe S. A study on partial purification and characterization of extracellular alkaline amylases from Bacillus megaterium by solid state fermentation. Int J Appl Biol Pharmac Technol. 2011;2(3):37-46.
  59. Baysal Z, Uyar F, Aytekin C. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 2003 Jul;38(12):1665-1668. CrossRef
  60. Hashemi M, Razavi SH, Shojaosadati SA, Mousavi SM. The potential of brewer’s spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system. N Biotechnol. 2011 Feb 28;28(2):165-72. Epub 2010 Oct 21. PubMed, CrossRef
  61. Janeček Š. Amylolytic enzymes – focus on the alpha-amylases from archaea and plants. Nova Biotechnologica. 2009;9(1):5-25.
  62. Das S, Singh S, Sharma V, Soni ML. Biotechnological applications of industrially important amylase enzyme. Inter J Phar Bio Sci. 2011;2(1):486-496.
  63. Avdiyuk KV, Varbanets LD, Safronova LA, Harkevich ES. Purification of Aspergillus flavus var. oryzae and Bacillus subtilis α-amylases abd their properties. Biotekhnolohiia. 2012;5(5):91-99.
  64. Mahdavi A, Sajedi RH, Rassa M, Jafarian V. Characterization of an a-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iran J Biotechnol. 2010;8(2):103-111.
  65. Uma Maheswar Rao JL, Satyanarayana T. Purification and characterization of a hyperthermostable and high maltogenic alpha-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol. 2007 Aug;142(2):179-93. PubMed, CrossRef
  66. Kubrak OI, Storey JM, Storey KB, Lushchak VI. Production and properties of alpha-amylase from Bacillus sp. BKL20. Can J Microbiol. 2010 Apr;56(4):279-88. PubMed, CrossRef
  67. Haki GD, Anceno AJ, Rakshit SK. Atypical Ca2+-independent, raw-starch hydrolysing α-amylase from Bacillus sp. GRE1: characterization and gene isolation. World J Microbiol Biotechnol. 2008;24(11):2517-2524. CrossRef
  68. Femi-Ola TO, Olowe BM. Characterization of alpha amylase from Bacillus subtilis BS5 isolated from Amitermes evuncifer Silvestri. Res J Microbiol. 2011 Feb;6(2):140-146. CrossRef
  69. Nouadri T, Meraihi Z, Shahrazed D-D, Leila B. Purification and characterization of the α-amylase isolated from Penicillium camemberti PL21. Afr J Biotechnol Res. 2010;4(6):155-162.
  70. Ozean BD, Baylan M, Ozean N, Tekdal D. Characterization of thermostable α-amylase from thermophilic and alkaliphilic Bacillus sp. isolate DM-15. Res J Biol Sci. 2010;5(1):118-124. CrossRef
  71. Nurachman Z, Kono A,  Radjasa OK, Natalia D.  Identification a Novel Raw-Starch-Degrading-α-Amylase from a Tropical Marine Bacterium.  Am J  Biochem Biotechnol. 2010;6(4):300-306. CrossRef
  72. Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP. Purification, properties and structural aspects of a thermoacidophilic alpha-amylase from Alicyclobacillus acidocaldarius atcc 27009. Insight into acidostability of proteins. Eur J Biochem. 1994 Dec 15;226(3):981-91. PubMed
  73. Kim TU, Gu BG., Jeong JY, Byun SM, Shin YC. Purification and characterization of a maltotetraose-forming alkaline µ-amylase from an alkalophilic Bacillus strain, GM8901. Appl Environ Microbiol. 1995 Aug;61(8):3105-12. PubMed, PubMedCentral
  74. Bano S, Ul Qader SA, Aman A, Syed MN, Azhar A. Purification and characterization of novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS Pharm Sci Tech. 2011 Mar;12(1):255-61. PubMed, PubMedCentral, CrossRef
  75. Konsoula Z, Liakopoulou-Kyriakides M. Hydrolysis of starches by the action of an α-amylase from Bacillus subtilis. Process Biochem. 2004 Jul;39(11):1745-1749. CrossRef
  76. Kudirat SB. Amylase activity of a yellow pigmented bacterium isolated from cassava waste. Afr J Biotechnol. 2009;8(20):5487-5492.
  77. Kandra L, Gyemant G, Remenyik J, Hovánszki G, Lipták A. Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates.  FEBS Lett. 2002 May 8;518(1-3):79-82. PubMed, CrossRef
  78. Kubrak OI, Lushchak VI. Microbe amylases: characteristic, properties and practical use. Mikrobiol Zhurn. 2007 Nov-Dec;69(6):56-76. Ukrainian. PubMed
  79. Amutha K, Priya KJ. Effect of pH, temperature and metal ions on amylase activity from Bacillus Subtilis KCX 006. Int J Pharma Bio Sci. 2011;2(20):407-413.
  80. Rivera MH, López-Munguía A, Soberón X, Saab-Rincón G. Alpha-amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Eng. 2003 Jul;16(7):505-14. PubMed, CrossRef
  81. Sarian FD, van der Kaaij RM, Kralj S, Wijbenga DJ, Binnema DJ, van der Maarel MJ, Dijkhuizen L. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl Microbiol Biotechnol. 2012 Jan;93(2):645-54. PubMed, PubMedCentral, CrossRef
  82. Božić N, Ruiz J, López-Santín J, Vujčić Z. Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a.  Biochem Eng J. 2011 Jan;53(2):203-209. CrossRef
  83. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol. 2002 Mar 28;94(2):137-55. Review. PubMed, CrossRef
  84. Naumoff DG. Hierarchical classification of glycoside hydrolases. Biochemistry (Mosc.). 2011;76(6):622-635. CrossRef
  85. Horváthová V, Janecek S, Sturdík E. Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys. 2001 Mar;20(1):7-32. Review. PubMed
  86. Sajedi RH, Taghdir M, Naderi-Manesh H, Khajeh K, Ranjbar B. Nucleotide sequence, structural investigation and homology modeling studies of a Ca2+-independent alpha-amylase with acidic pH-profile. J Biochem Mol Biol. 2007 May 31;40(3):315-24. PubMed, CrossRef
  87. Ito S., Horikoshi K. Promising α-Amylases for Modern Detergents. J Biol Macromol. 2004;4(1):3-11.
  88. Kuddus M, Roohi, Arif JM, Ramteke PW. An overview of cold-active microbial alpha-amylase: adaptation strategies and biotechnological potentials. Biotechnology. 2011;10(3):246-258. CrossRef
  89. Rodríguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S. Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases. Appl Environ Microbiol. 2005 Jan;71(1):297-302. PubMed, PubMedCentral
  90. Tan TC, Mijts BN, Swaminathan K, Patel BK, Divne C. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J Mol Biol. 2008 May 9;378(4):852-70. Epub 2008 Feb 29. PubMed, CrossRef
  91. Davies GJ, Wilson KS, Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557-9. PubMed, PubMedCentral, CrossRef
  92. Nielsen JE, Borchert TV. Protein engineering of bacterial alpha-amylases. Biochim Biophys Acta. 2000 Dec 29;1543(2):253-274. Review. PubMed, CrossRef
  93. Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 1999 Mar 19;447(1):58-60. PubMed, CrossRef
  94. Santiago M, Linares L, Sánchez S, Rodríguez-Sanoja R. Functional characteristics of the starch-binding domain of Lactobacillus amylovorus α-amylase. Biologia (Bratislava). 2005;60(Suppl. 16):111-114.
  95. Goto M, Shinoda N, Oka T, Sameshima Y, Ekino K, Furukawa K. Thr/Ser-rich domain of Aspergillus glucoamylase is essential for secretion. Biosci Biotechnol Biochem. 2004 Apr;68(4):961-3. PubMed, CrossRef
  96. Hagihara H, Hayashi Y, Endo K, Igarashi K, Ozawa T, Kawai S, Ozaki K, Ito S. Deduced amino-acid sequence of a calcium-free alpha-amylase from a strain of Bacillus: implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur J Biochem. 2001 Jul;268(14):3974-82. PubMed, CrossRef
  97. Malhotra R, Noorwez SM, Satyanarayana T. Production and partial characterization of thermostable and calcium-independent alpha-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett Appl Microbiol. 2000 Nov;31(5):378-84. PubMed, CrossRef
  98.  Koshland DE. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev. 1953 Nov;28(4):416-436.  CrossRef
  99. Reddy NS, Nimmagadda A, Sambasiva Rao KRS. An overview of the microbial α-amylase family. Afr J Biotechnol. 2003 Dec;2(12):645-648. CrossRef
  100. Uitdehaag JCM, van der Veen BA, Dijkhuizen ., Dijkstra BW. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the alphaamylase family. Enzyme Microb Technol. 2002 Mar;30(3):295-304. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.