Ukr.Biochem.J. 2013; Volume 85, Issue 6, Nov-Dec, pp. 106-128


Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes

S. V. Komisarenko1, S. O. Kosterin1, E. V. Lugovskoy1, V. I. Kalchenko2

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;

This interdisciplinary study, performed with participation of research workers of Palladin Institute of Biochemistry and Institute of Organic Chemist­ry of NAS of Ukraine, is devoted to analysis of biochemical effects of some calixarene methylene bisphosphonic acids (cyclic phenol oligomers) on two well-known biological phenomenons – Mg2+-dependent ATP hydrolysis (myosin subfragment-1 of myometrium smooth muscle was used as an example) and fibrin polymerization.
Calix[4]arene С-97 (calix[4]arene methylene bisphosphonic acids) is a macrocyclic substance, which contains intramolecular highly ordered lipophilic cavity formed by four aromatic rings, one of which is functionalized at the upper rim with methylene bisphosphonic group. At concentration of 100 µM, this substance was shown to effectively inhibit ATPase activity of pig myometrium myosin subfragment-1 (inhibition coefficient І0.5 = 83 ± 7 µM). At the same time, this calix[4]arene causes significant (vs. control) increase of myosin subfragment-1 hydrodynamic diameter, which may indicate formation of an intermolecular complex between calixa­rene and myosin head. Computer simulation methods (docking and molecular dynamics with addition of grid technologies) enabled to elucidate the grounds of intermolecular interactions between calix[4]arene С-97 and myometrium myosin subfragment-1, that involve hydrophobic, electrostatic and π-π-stacking interactions, some of which are close to the ATPase active centre. In view of the ability of calixarenes to penetrate into the cell and their low toxicity, the results obtained may be used as a basis for further development of a new generation of supramolecular effectors (starting from the above mentioned substances, in particular calix[4]arene С-97) for regulation of smooth muscle contractile activity at the level of ATP dependent actin-myosin interaction.
Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum rate of fibrin polymerization in the fibrinogen + thrombin reaction decreased by 50% at concentrations of 0.52·10-6 M (IC50). At this concentration, the molar ratio of the compound to fibrinogen was 1.7 : 1. For the case of desAB fibrin polymerization, the IC50 was 1.26·10-6 M at a molar ratio of C-192 to fibrin monomer of 4 : 1. Dipropoxycalix[4]-arene bis-methylene-bis-phosphonic acid (C-98) inhibited fibrin desAB polymerization with an IC50 = 1.31·10-4 M. We hypothesized that C-192 blocks fibrin formation by combining with polymerization site ‘A’ (Aa17–19), which ordinarily initiates protofibril formation in a ‘knob-hole’ manner. This suggestion was confirmed by an HPLC assay, which showed a host–guest inclusion complex of C-192 with the synthetic peptide Gly-Pro-Arg-Pro, an analogue of site ‘A’. Further confirmation that the inhibitor was acting at the initial step of the reaction was obtained by electron microscopy, with no evidence of protofibril formation being evident. Calixarene C-192 also doubled both the prothrombin time and the activated partial thromboplastin time in normal human blood plasma at concentrations of 7.13·10-5 and 1.10·10-5 M, respectively. These experiments demonstrate that C-192 is a specific inhibitor of fibrin polymerization and blood coagulation and can be used for the design of a new class of antithrombotic agents.

Keywords: , , , , , , ,


  1. Gutsche C. D. Calixarenes: an introduction, monographs in supramolecular chemistry. Royal Society of Chemistry. Cambridge, 2008.
  2. Calixarenes 2001. Asfari M.-Z., Böhmer V., Harrowfield J., Vicens J. (eds.). Kluwer Academic Publishers. Dordrecht, 2001.
  3. Calixarenes for Separations. Lumetta G. J., Rogers R. D., Gopalan A.S. (eds). American Chemical Society. Washington, 2000.
  4. Calixarenes in the Nanoworld. Vicens J., Harrowfield J. (eds). Springer. Dordrecht. The Netherlands, 2007.
  5. Da Silva E, Lazar AN, Coleman AW. Biopharmaceutical applications of calixarenes. J Drug Sci Tech. 2004;14(1):3-20. CrossRef
  6. Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in bio-medical researches. Curr Med Chem. 2009;16(13):1630-55. Review. PubMed
  7. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009 Jan 1;360(1):53-62. PubMed, PubMedCentral, CrossRef
  8. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Pöstlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rücklinger E, Greil R; ABCSG-12 Trial Investigators, Marth C. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med. 2009 Feb 12;360(7):679-91. PubMed, CrossRef
  9. Gulaya NM, Komisarenko SV. Inorganic pyrophosphate, its structural analogues and inorganic pyrophosphatase. Uspekhi Biol. Khimii. 1982;22:195-213.
  10. Komisarenko SV, Karlova NP, Kolesnikova IN. et al. Chemistry and biology of immunoregulators: [Collected papers] / Acad. Sci. Latv. SSR, Inst. org. Synthesis; [Editorial board: G. I. Chipens (editor-in-chief) et al.]. Riga: Zinante, 1985. P. 237-252.
  11. Komisarenko SV, Gulaya NM, Borisenro АМ, Veller ОS. Diphosphonate analogues of pyrophosphate and  inorganic pyrophosphatase in mice. Dopov Akad Nauk Ukr SSR. 1979; (7):563-566.
  12. Komissarenko SV, Kolesnikova IN, Fomovskaia GN. The influence of diphosphonic analogues of inorganic pyrophosphate on reactions catalyzed by DNA-dependent RNA-polymerase II. Ukr Biokhim Zhurn. 1985 Mar-Apr;57(2):62-6. Russian. PubMed
  13. Komissarenko SV, Fomovskaia GN, Kolesnikova IN, Tarusova NB, Borisevich AN. The influence of diphosphonic analogues of inorganic pyrophosphate on activity of RNA-polymerases from the calf thymus. Ukr Biokhim Zhurn. 1985 Mar-Apr;57(2):56-62. Russian. PubMed
  14. Fomovskaya GN, Komissarenko SV. Kinetics of the interaction of methylene diphosphonic acid and inorganic pyrophosphate with DNA-dependent RNA-polymerase from calf thymus. Biokhimiia. 1985 May;50(5):839-43. Russian. PubMed
  15. Gaivoronskaya GG, Komissarenko SV. Effect of diphosphonic acids on alkaline phosphatase activity. Ukr Biokhim Zhurn. 1983 Jul-Aug;55(4):403-7. Russian. PubMed
  16. Smirnova IN, Kudryavtseva NA, Komissarenko SV, Tarusova NB, Baykov AA. Diphosphonates are potent inhibitors of mammalian inorganic pyrophosphatase. Arch Biochem Biophys. 1988 Nov 15;267(1):280-4. PubMed, CrossRef
  17. Karlova NP, Komissarenko SV. Вплив метилендифосфонової кислоти на морфологію лімфоїдних органів. Dopov Akad Nauk Ukr SSR. 1981;(5):68-70.
  18. Gulaia NM, Bogomolets EO, Karlova NP, Komissarenko SV. Effect of methylene diphosphonic acid on certain processes in animal tissues. Farmakol Toksikol. 1980 Mar-Apr;43(2):192-5. Russian. PubMed
  19. Gaivoronskaya GG, Strelchuk SI, Komissarenko SV. Mutagenic and antimutagenic effects of diphosphonic acids. Tsitol Genet. 1981;15(5):41-45.
  20. Fomovskaya GN, Komissarenko SV.  Chemistry of tumors in USSR. Materials of ІІІ All-Union meeting «Actual problems of experimental chemotherapy of tumors», Chernogolovka, November, 1987; Issue 48: 14-16.
  21. Sharykina NI, Kudriavtseva IG, Komissarenko SV, Karlova NP. Chemistry of tumors in USSR. Materials of ІІІ All-Union meeting «Actual problems of experimental chemotherapy of tumors», Chernogolovka, November, 1987; Issue 48: 12-13.
  22. Curry JD, Nicholson DA, Quimby OT. Top Phosphorus Chem. 1972;7:37-102.
  23. Vovk AI, Kalchenko VI, Cherenok SA, Kukhar VP, Muzychka OV, Lozynsky MO. Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Org Biomol Chem. 2004 Nov 7;2(21):3162-6. PubMed, CrossRef
  24. Lugovskoy EV, Gritsenko PG, Koshel TA, Koliesnik IO, Cherenok SO, Kalchenko OI, Kalchenko VI, Komisarenko SV. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J. 2011 Apr;278(8):1244-51.  PubMed, CrossRef
  25. Khataee HR, Khataee AR. Applications of molecular motors in intelligent nanosystems. Digest J Nanomater Biostruct. 2009;4:613-621.
  26. Burghardt TP, Neff KL, Wieben ED, Ajtai K. Myosin individualized: single nucleotide polymorphisms in energy transduction. BMC Genomics. 2010 Mar 15;11:172.  PubMed, PubMedCentral, CrossRef
  27. Bárány M., Bárány K. Biochemistry of Smooth Muscle Contraction. Ed. Bárány M. Chicago: Academic Press, 1996. 418 p.
  28. Kaliman I, Grigorenko B, Shadrina M, Nemukhin A. Opening the Arg-Glu salt bridge in myosin: computational study. Phys Chem Chem Phys. 2009 Jun 28;11(24):4804-7.
    PubMed, CrossRef
  29. Popov ЕМ, Demin VV, Shibanova ED. Problem of protein. – 2: Three-dimensional structure of protein. Edited by T. I. Sorokina. М: Nauka, 1996. 480 p.
  30. Levitsky DI. Actomyosin systems of biological motility. Biochemistry (Mosc). 2004 Nov;69(11):1177-89. Review. PubMed
  31. Bevza AA, Labyntseva RD, Rodik RV, Cherenok SO, Kosterin SO, Kal’chenko VI. Effect of calix[4]arenes on the activity of actomyosin ATPase and actomyosin subfragment-1 ATPase from the myometrium. Ukr Biokhim Zhurn. 2009 Nov-Dec;81(6):49-58. Ukrainian. PubMed
  32. Bárány M, Bárány K, Gaetjens E, Bailin G. Chicken gizzard myosin. Arch Biochem Biophys. 1966 Jan;113(1):205-22. PubMed
  33. Weber A. The ultracentrifugal separation of L-myosin and actin in an actomyosin sol under the influence of ATP. Biochim Biophys Acta. 1956 Feb;19(2):345-51. PubMed
  34. Weeds AG, Taylor RS. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54-6. PubMed
  35. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed
  36. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5. PubMed
  37. Iwane AH, Kitamura K, Tokunaga M, Yanagida T. Myosin subfragment-1 is fully equipped with factors essential for motor function. Biochem Biophys Res Commun. 1997 Jan 3;230(1):76-80. PubMed
  38. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chemistry. 1956 Nov;28(11):1756-58. CrossRef
  39. Kurganov VI. Allosteric enzymes. М.: Nauka, 1978.  248 p.
  40. Merkus HG. Particle Size Measurements. Fundamentals, Practice, Quality. Springer, 2009. 533 p.
  41. Storn RM, Price K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J Glob Optim. 1997;11:341-359. CrossRef
  42. Case DA, Pearlman DA, Caldwell JW. et al. AMBER 7. University of California, San Francisco, 2002. 318 p.
  43. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. PubMed, PubMedCentral
  44. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005 Dec;26(16):1701-18. PubMed
  45. Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford: Clarendon Press, 2002. 385 р.
  46. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010 Dec 2;468(7324):705-8. PubMed, PubMedCentral, CrossRef
  47. Korostylev PP. Preparing solutions for chemico-analytical researches. Publishers Acad. Sci USSR, 1964.  310 p.
  48. Burgess SA, Yu S, Walker ML, Hawkins RJ, Chalovich JM, Knight PJ. Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state. J Mol Biol. 2007 Oct 5;372(5):1165-78. PubMed
  49. Proteins and Cell Regulation. Myosins. A Superfamily of Molecular Motors. Ed. Coluccio L. M. Watertown, MA, USA: Springer, 2008; 7: 467 р.
  50. Babu GJ, Warshaw DM, Periasamy M. Smooth muscle myosin heavy chain isoforms and their role in muscle physiology. Microsc Res Tech. 2000 Sep 15;50(6):532-40. Review. PubMed
  51. Burgess SA, Yu S, Walker ML, Hawkins RJ, Chalovich JM, Knight PJ. Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state. J Mol Biol. 2007 Oct 5;372(5):1165-78. PubMed
  52. Veklich TO, Kosterin SO, Rodik RV, Cherenok SO, Boнko VI, Kalchenko VI. Effect of calixarene-phosphonic acid on Na+, K+-ATPase activity in plasma membranes of the smooth-muscle cells. Ukr Biokhim Zhurn. 2006 Jan-Feb;78(1):70-86. Ukrainian. PubMed
  53. Cherenok SO, Yuschenko OA, Gritsenko PG, Lugovskoy EV, Koshel TA, Chernishov VI, Koliesnik IO, Kalchenko OI, Komisarenko SV, Kalchenko VI. Synthesis of calixarene-methylenebisphosphonic acids and their influence on fibrin polymerization. Phosphorus Sulfur Silicon Relat Elem. 2011;186(4):964-965.  CrossRef
  54. Blombäck B. Fibrinogen and fibrin–proteins with complex roles in hemostasis and thrombosis. Thromb Res. 1996 Jul 1;83(1):1-75. Review. PubMed
  55. Laudano AP, Doolittle RF. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA. 1978 Jul;75(7):3085-9. PubMed, PubMedCentral
  56. Fowler WE, Hantgan RR, Hermans J, Erickson HP. Structure of the fibrin protofibril. Proc Natl Acad Sci USA. 1981 Aug;78(8):4872-6. PubMed, PubMedCentral
  57. Weisel JW, Veklich Y, Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol. 1993 Jul 5;232(1):285-97. PubMed
  58. Weisel JW. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J. 1986 Dec;50(6):1079-93. PubMed, PubMedCentral
  59. Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997 Oct 2;389(6650):455-62. PubMed
  60. Varetskaya TV. Microheterogeneity of fibrinogen. Cryofibrinogen. Ukr Biokhim Zhurn. 1960;XXXII(1):13-24.
  61. Belitser VA, Varetskaja TV, Malneva GV. Fibrinogen-fibrin interaction. Biochim Biophys Acta. 1968 Feb 19;154(2):367-75. PubMed
  62. Lugovskoi EV, Makogonenko EM, Chudnovets VS, Derzskaya SG, Gogolinskaya GK, Kolesnikova IN, Bukhanevich AM, Sitak IN, Lyashko ED, Komissarenko SV. The study of fibrin polymerization with monoclonal antibodies. Biomed Sci. 1991;2(3):249-56. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.