Ukr.Biochem.J. 2013; Volume 85, Issue 6, Nov-Dec, pp. 129-133
doi: http://dx.doi.org/10.15407/ubj85.06.129
Seeing is believing! Live confocal imaging of microvascular networks in situ: morphology, Ca(2+) signalling and tone
T. Burdyga, L. Borysova
Department of Cellular and Molecular Physiology,
Institute of Translational Medicine,
University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
2- and 3-dimensional confocal imaging of Fluo-4 loaded ureteric microvesells in situ allowed us to demonstrate distinct morphology, Ca2+ signalling and contractility in myocytes of arcade arterioles and pericytes of arcade venules. In myocytes and pericytes, Ca2+ signals arise exclusively from Ca2+ release from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate receptors. Са2+ transients in pericytes are less oscillatory, slower and longer-lasting than those in myocytes. The data obtained suggest differences in the mechanisms controlling local blood flow in precapillary arterioles and postcapillary venules.
Keywords: Ca(2+) signalling, confocal microscopy, microvascular networks, myocytes, pericytes
References:
- Burdyga T, Shmygol A, Eisner DA, Wray S. A new technique for simultaneous and in situ measurements of Ca2+ signals in arteriolar smooth muscle and endothelial cells. Cell Calcium. 2003 Jul;34(1):27-33. PubMed
- Borisova L, Wray S, Eisner DA, Burdyga T. How structure, Ca signals, and cellular communications underlie function in precapillary arterioles. Circ Res. 2009 Oct 9;105(8):803-10. PubMed, CrossRef
- Perez JF, Sanderson MJ. The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5-HT and KCl. J Gen Physiol. 2005 Jun;125(6):555-67. PubMed, PubMedCentral
- Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440-50. PubMed
- De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010 Nov;36(11):1813-25. Review. PubMed, CrossRef
- Fujiwara T, Tenkova TI, Kondo M. Wall cytoarchitecture of the rat ciliary process microvasculature revealed with scanning electron microscopy. Anat Rec. 1999 Feb 1;254(2):261-8. PubMed
- Higuchi K, Hashizume H, Aizawa Y, Ushiki T. Scanning electron microscopic studies of the vascular smooth muscle cells and pericytes in the rat heart. Arch Histol Cytol. 2000 May;63(2):115-26. PubMed
- Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol. 1991 Apr;113(1):147-54. PubMed, PubMedCentral
- Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995 Oct 27;27(5236):633-7. PubMed
- Marshall JM. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol. 1982 Nov;332(1):169-86. PubMed, PubMedCentral, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.