Ukr.Biochem.J. 2013; Volume 85, Issue 6, Nov-Dec, pp. 129-133

doi: http://dx.doi.org/10.15407/ubj85.06.129

Seeing is believing! Live confocal imaging of microvascular networks in situ: morphology, Ca(2+) signalling and tone

T. Burdyga, L. Borysova

Department of Cellular and Molecular Physiology,
Institute of Translational Medicine,
University of Liverpool, Crown Street, Liverpool, L69 3BX, UK

2- and 3-dimensional confocal imaging of Fluo-4 loaded ureteric microvesells in situ allowed us to demonstrate distinct morphology, Ca2+ signalling and contractility in myocytes of arcade arterioles and pericytes of arcade venules. In myocytes and pericytes, Ca2+ signals arise exclusively from Ca2+ release from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate receptors. Са2+ transients in pericytes are less oscillatory, slower and longer-lasting than those in myocytes. The data obtained suggest differences in the mechanisms controlling local blood flow in precapillary arterioles and postcapillary venules.

Keywords: , , , ,


References:

  1. Burdyga T, Shmygol A, Eisner DA, Wray S. A new technique for simultaneous and in situ measurements of Ca2+ signals in arteriolar smooth muscle and endothelial cells. Cell Calcium. 2003 Jul;34(1):27-33. PubMed
  2. Borisova L, Wray S, Eisner DA, Burdyga T. How structure, Ca signals, and cellular communications underlie function in precapillary arterioles. Circ Res. 2009 Oct 9;105(8):803-10. PubMed, CrossRef
  3. Perez JF, Sanderson MJ. The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5-HT and KCl. J Gen Physiol. 2005 Jun;125(6):555-67. PubMed, PubMedCentral
  4. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440-50. PubMed
  5. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010 Nov;36(11):1813-25. Review. PubMed, CrossRef
  6. Fujiwara T, Tenkova TI, Kondo M. Wall cytoarchitecture of the rat ciliary process microvasculature revealed with scanning electron microscopy. Anat Rec. 1999 Feb 1;254(2):261-8. PubMed
  7. Higuchi K, Hashizume H, Aizawa Y, Ushiki T. Scanning electron microscopic studies of the vascular smooth muscle cells and pericytes in the rat heart. Arch Histol Cytol. 2000 May;63(2):115-26. PubMed
  8. Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol. 1991 Apr;113(1):147-54. PubMed, PubMedCentral
  9. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995 Oct 27;27(5236):633-7. PubMed
  10. Marshall JM. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol. 1982 Nov;332(1):169-86.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.