Ukr.Biochem.J. 2013; Volume 85, Issue 6, Nov-Dec, pp. 166-182


Sensing and signaling for peroxisome autophagic degradation (pexophagy) in yeasts

A. A. Sibirny1,2

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2University of Rzeszow, Poland

Yeast cells, similarly to cells of other eukaryotic organisms, possess intracellular organelles, including that of peroxisomes also known as microbodies­. Enzymes of oxidative metabolism, mainly hydrogen peroxide generating oxidases, catalase, some enzymes of glyoxylic cycle and enzymes involved in catabolism of unusual carbon sources (n-alkanes, methanol) are located in peroxisomes. Especially important role is played by peroxisomes in methylotrophic yeasts, unique eukaryotic organisms capable to utilize one-carbon compound, methanol. Active proliferation and biogenesis of peroxisomes occur on methanol, so these organelles can occupy between 30 and 80% of cellular volume. After shift of methanol-grown cells into media with multicarbon substrates, such as glucose or ethanol, an excess of peroxisomes degrades in the specific process known as autophagic degradation of peroxisomes or pexophagy. There are 36 AuTophaGy related genes, known as ATG genes, which products are also involved in pexophagy. At the same time, not much is known on mechanisms of glucose and ethanol sensing and signaling which initia­te pexophagy process. Proteins Pfk1 (α-subunit of phosphofructokinase), Slt2 (mitogen-activating protein kinase) Gpr1 and Gpa2 (components of GPCR system) and Snf3 and Ggt2 (high- and low-affinity glucose sensors) were found to be involved in signaling of glucose-induced pexophagy in Saccharomyces cerevisiae. In the methylotrophic yeast Pichia pastoris, glucose sensing protein Gss1 was found to be important for glucose-induced pexophagy. Very few is known on mechanisms of ethanol sensing and signaling during pexophagy which is an important problem for future studies.

Keywords: , , , , ,


  1. Aksam EB, Koek A, Kiel JA, Jourdan S, Veenhuis M, van der Klei IJ. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy. 2007 Mar-Apr;3(2):96-105. PubMed, CrossRef
  2. Aksam EB, de Vries B, van der Klei IJ, Kiel JA. Preserving organelle vitality: peroxisomal quality control mechanisms in yeast. FEMS Yeast Res. 2009 Sep;9(6):808-20.  Review. PubMed, CrossRef
  3. Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y, Kato N, Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell. 2005 Feb;16(2):446-57. PubMed, PubMedCentral, CrossRef
  4. Ano Y, Hattori T, Kato N, Sakai Y. Intracellular ATP correlates with mode of pexophagy in Pichia pastoris. Biosci Biotechnol Biochem. 2005 Aug;69(8):1527-33. PubMed, CrossRef
  5. Baerends RJ, Rasmussen SW, Hilbrands RE, van der Heide M, Faber KN, Reuvekamp PT, Kiel JA, Cregg JM, van der Klei IJ, Veenhuis M. The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem. 1996 Apr 12;271(15):8887-94. PubMed, CrossRef
  6. Bellu AR, Komori M, van der Klei IJ, Kiel JA, Veenhuis M. Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem. 2001 Nov 30;276(48):44570-4.
    PubMed, CrossRef
  7. Bellu AR, Kram AM, Kiel JA, Veenhuis M, van der Klei IJ. Glucose-induced and nitrogen-starvation-induced peroxisome degradation are distinct processes in Hansenula polymorpha that involve both common and unique genes. FEMS Yeast Res. 2001 Apr;1(1):23-31. PubMed, CrossRef
  8. Bellu AR, Salomons FA, Kiel JA, Veenhuis M, Van Der Klei IJ. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J Biol Chem. 2002 Nov 8;277(45):42875-80. PubMed, CrossRef
  9. Brooke AG, Dijkhuizen L, Harder W. Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha. Arch Microbiol. 1986 Jun;145(1):62-70. CrossRef
  10. Brown LA, Baker A. Shuttles and cycles: transport of proteins into the peroxisome matrix (review). Mol Membr Biol. 2008 Aug;25(5):363-75. Review. PubMed, CrossRef
  11. Colombo et al. 1998.
  12. Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T. Expression in the yeast Pichia pastoris. Methods Enzymol. 2009;463:169-89. Review. PubMed, CrossRef
  13. Dunn WA Jr, Cregg JM, Kiel JA, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy. 2005 Jul;1(2):75-83. Review. PubMed, CrossRef
  14. Faber KN, Harder W, Ab G, Veenhuis M. Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast. 1995 Nov;11(14):1331-44. Review. PubMed, CrossRef
  15. Farré JC, Subramani S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol. 2004 Sep;14(9):515-23. Review. PubMed, CrossRef
  16. Farré JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell. 2008 Mar;14(3):365-76. PubMed, PubMedCentral, CrossRef
  17. Farré JC, Krick R, Subramani S, Thumm M. Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol. 2009 Aug;21(4):522-30. Review. PubMed, PubMedCentral, CrossRef
  18. Fry MR, Thomson JM, Tomasini AJ, Dunn WA Jr. Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8. Autophagy. 2006 Oct-Dec;2(4):280-8. PubMed
  19. Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol Rev. 2008 Jul;32(4):673-704. Review. PubMed, CrossRef
  20. Hazra PP, Suriapranata I, Snyder WB, Subramani S. Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic. 2002 Aug;3(8):560-74. PubMed, CrossRef
  21. Herrero P, Martínez-Campa C, Moreno F. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett. 1998 Aug 28;434(1-2):71-6. PubMed, CrossRef
  22. Herrero P, Flores L, de la Cera T, Moreno F. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Biochem J. 1999 Oct 15;343 Pt 2:319-25. PubMed, PubMedCentral, CrossRef
  23. Kiel JA. Autophagy in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):819-30. Review. PubMed, PubMedCentral, CrossRef
  24. Lahtchev KL, Semenova VD, Tolstorukov II, van der Klei I, Veenhuis M. Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732. Arch Microbiol. 2002 Feb;177(2):150-8. PubMed
  25. Lanyon-Hogg T, Warriner SL, Baker A. Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell. 2010 Feb 12;102(4):245-63. Review. PubMed, CrossRef
  26. Leão-Helder AN, Krikken AM, Lunenborg MG, Kiel JA, Veenhuis M, van der Klei IJ. Hansenula polymorpha Tup1p is important for peroxisome degradation. FEMS Yeast Res. 2004 Sep;4(8):789-94. PubMed, CrossRef
  27. Liesen T, Hollenberg CP, Heinisch JJ. ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol Microbiol. 1996 Aug;21(3):621-32. PubMed, CrossRef
  28. Ma C, Subramani S. Peroxisome matrix and membrane protein biogenesis. IUBMB Life. 2009 Jul;61(7):713-22. Review. PubMed, PubMedCentral, CrossRef
  29. Maidan MM, De Rop L, Serneels J, Exler S, Rupp S, Tournu H, Thevelein JM, Van Dijck P. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell. 2005 Apr;16(4):1971-86. PubMed, PubMedCentral, CrossRef
  30. Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YY, Fagarasanu A, Goodlett DR, Aebersold R, Rachubinski RA, Aitchison JD. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol. 2004 Dec 20;167(6):1099-112. PubMed, PubMedCentral, CrossRef
  31. Manjithaya R, Nazarko TY, Farré JC, Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 2010 Apr 2;584(7):1367-73. Review. PubMed, PubMedCentral, CrossRef
  32. Mast FD, Fagarasanu A, Knoblach B, Rachubinski RA. Peroxisome biogenesis: something old, something new, something borrowed. Physiology (Bethesda). 2010 Dec;25(6):347-56. Review. PubMed, CrossRef
  33. Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol. 2010 Sep;76(17):5702-9. PubMed, PubMedCentral, CrossRef
  34. Michels PA, Moyersoen J, Krazy H, Galland N, Herman M, Hannaert V. Peroxisomes, glyoxysomes and glycosomes (review). Mol Membr Biol. 2005 Jan-Apr;22(1-2):133-45. Review. PubMed, CrossRef
  35. Michels PA, Bringaud F, Herman M, Hannaert V. Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta. 2006 Dec;1763(12):1463-77. Review. PubMed, CrossRef
  36. Monastyrska I, Kiel JA, Krikken AM, Komduur JA, Veenhuis M, van der Klei IJ. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy. 2005 Jul;1(2):92-100. PubMed, CrossRef
  37. Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells. 2002 Jan;7(1):75-90. PubMed, CrossRef
  38. Mukaiyama H, Baba M, Osumi M, Aoyagi S, Kato N, Ohsumi Y, Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell. 2004 Jan;15(1):58-70. PubMed, PubMedCentral, CrossRef
  39. Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell. 2007 Jan;18(1):106-18. PubMed, PubMedCentral, CrossRef
  40. Nazarko TY, Farré JC, Polupanov AS, Sibirny AA, Subramani S. Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy. 2007 May-Jun;3(3):263-5. PubMed, CrossRef
  41. Nazarko VY, Thevelein JM, Sibirny AA. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol Int. 2008 May;32(5):502-4. PubMed
  42. Nazarko VY, Futej KO, Thevelein JM, Sibirny AA. Differences in glucose sensing and signaling for pexophagy between the baker’s yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy. 2008 Apr;4(3):381-4. PubMed, CrossRef
  43. Nazarko TY, Farré JC, Subramani S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol Biol Cell. 2009 Sep;20(17):3828-39. Epub 2009 Jul 15. PubMed, PubMedCentral, CrossRef
  44. Nazarko VY, Nazarko TY, Farré JC, Stasyk OV, Warnecke D, Ulaszewski S, Cregg JM, Sibirny AA, Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy. 2011 Apr;7(4):375-85. PubMed, PubMedCentral, CrossRef
  45. Oku M, Warnecke D, Noda T, Müller F, Heinz E, Mukaiyama H, Kato N, Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J. 2003 Jul 1;22(13):3231-41. PubMed, PubMedCentral, CrossRef
  46. Oku M, Nishimura T, Hattori T, Ano Y, Yamashita S, Sakai Y. Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Autophagy. 2006 Oct-Dec;2(4):272-9. PubMed, CrossRef
  47. Ozcan S, Dover J, Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 1998 May 1;17(9):2566-73. PubMed, PubMedCentral, CrossRef
  48. Ozcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69. Review. PubMed, PubMedCentral
  49. Polupanov AS, Nazarko VY, Sibirny AA. CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol Int. 2011 Apr;35(4):311-9. PubMed, CrossRef
  50. Polupanov AS, Nazarko VY, Sibirny AA. Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int J Biochem Cell Biol. 2012 Nov;44(11):1906-18. PubMed, CrossRef
  51. Rose M, Albig W, Entian KD. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur J Biochem. 1991 Aug 1;199(3):511-8. PubMed, CrossRef
  52. Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res. 2010 Mar;10(2):134-49. Review. PubMed, CrossRef
  53. Sakai Y, Oku M, van der Klei IJ, Kiel JA. Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta. 2006 Dec;1763(12):1767-75. Review. PubMed, CrossRef
  54. Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol. 1998 May 4;141(3):625-36. PubMed, PubMedCentral
  55. Saleem RA, Smith JJ, Aitchison JD. Proteomics of the peroxisome. Biochim Biophys Acta. 2006 Dec;1763(12):1541-51. Review. PubMed, PubMedCentral
  56. Saleem RA, Knoblach B, Mast FD, Smith JJ, Boyle J, Dobson CM, Long-O’Donnell R, Rachubinski RA, Aitchison JD. Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis. J Cell Biol. 2008 Apr 21;181(2):281-92. PubMed, PubMedCentral, CrossRef
  57. Saliola M, Getuli C, Mazzoni C, Fantozzi I, Falcone C. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. FEMS Yeast Res. 2007 Aug;7(5):693-701. PubMed, CrossRef
  58. Santangelo GM. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82. Review. PubMed, PubMedCentral
  59. Schrader M, Fahimi HD. The peroxisome: still a mysterious organelle. Histochem Cell Biol. 2008 Apr;129(4):421-40. PubMed, PubMedCentral, CrossRef
  60. Sibirny AA. Mechanisms of autophagy and pexophagy in yeasts. Biochemistry (Mosc). 2011 Dec;76(12):1279-90. Review. PubMed, CrossRef
  61. Sibirny AA. Molecular mechanisms of peroxisome biogenesis in yeasts. Mol Biol (Mosk). 2012 Jan-Feb;46(1):14-30. Review. Russian. PubMed
  62. Sibirny AA, Titorenko VI. A method of quantitative determination of alcohol oxidase and catalase in yeast colonies. Ukr Biokhim Zhurn. 1986 Sep-Oct;58(5):65-8. Russian. PubMed
  63. Sibirny AA, Titorenko VI, Efremov BD, Tolstorukov II. Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus. Yeast. 1987;3:233-241.  CrossRef
  64. Sibirny AA. Genetic control of methanol and ethanol metabolism in the yeast Pichia pinus. In: Proc. 6th Intern. Symp. on Genetics of Industrial Microorganisms. Starsbourg, France. Ed. by H. Heslot. Soc. Franc. Microbiol., 1990; 1: 545-554.
  65. Sibirny AA, Titorenko VI, Teslyar GE,  Petrushko  VI, Kucher  MM. Methanol and ethanol utilization in methylotrophic yeast Pichia pinus wild-type and mutant strains. Arch Microbiol. 1991; 156(6):455-462.
  66. Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ, Ideker T, Galitski T, Dimitrov K, Rachubinski RA, Aitchison JD. Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol. 2002 Jul 22;158(2):259-71. PubMed, PubMedCentral, CrossRef
  67. Stasyk OV, Nazarko TY, Stasyk OG, Krasovska OS, Warnecke D, Nicaud JM, Cregg JM, Sibirny AA. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol Int. 2003;27(11):947-52. PubMed, CrossRef
  68. Stasyk OV, Stasyk OG, Komduur J, Veenhuis M, Cregg JM, Sibirny AA. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J Biol Chem. 2004 Feb 27;279(9):8116-25. PubMed, CrossRef
  69. Stasyk OV, Stasyk OG, Mathewson RD, Farré JC, Nazarko VY, Krasovska OS, Subramani S, Cregg JM, Sibirny AA. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy. 2006 Jan-Mar;2(1):30-8. PubMed, CrossRef
  70. Stasyk OG, van Zutphen T, Ah Kang H, Stasyk OV, Veenhuis M, Sibirny AA. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. FEMS Yeast Res. 2007 Oct;7(7):1103-13. PubMed, CrossRef
  71. Stasyk OV, Nazarko TY, Sibirny AA. Methods of plate pexophagy monitoring and positive selection for ATG gene cloning in yeasts. Methods Enzymol. 2008;451:229-39. PubMed, CrossRef
  72. Stasyk OG, Maidan MM, Stasyk OV, Van Dijck P, Thevelein JM, Sibirny AA. Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot Cell. 2008 Apr;7(4):735-46. PubMed, PubMedCentral, CrossRef
  73. Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim Biophys Acta. 2006 Dec;1763(12):1733-48. Review. PubMed
  74. Stevens P, Monastyrska I, Leão-Helder AN, van der Klei IJ, Veenhuis M, Kiel JA. Hansenula polymorpha Vam7p is required for macropexophagy. FEMS Yeast Res. 2005 Nov;5(11):985-97. PubMed
  75. Subramani S. PEX genes on the rise. Nat Genet. 1997 Apr;15(4):331-3. PubMed, CrossRef
  76. Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev. 1998 Jan;78(1):171-88. Review. PubMed
  77. Suzuki K. Selective autophagy in budding yeast. Cell Death Differ. 2013 Jan;20(1):43-8. Review. PubMed, PubMedCentral, CrossRef
  78. Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999 Sep;33(5):904-18. Review. PubMedCrossRef
  79. Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol. 2012;2012:512721. PubMed, PubMedCentral, CrossRef
  80. Tolstorukov II, Efremov BD, Benevolensky SV,  Titorenko VI,  Sibirny AA. Mutants of the methylotrophic yeastPichia pinus defective in C2 metabolism. Yeast. 1989 May;5(3):179-186. CrossRef
  81. Tolstorukov I, Cregg JM. Classical genetics. Methods Mol Biol. 2007;389:189-202. PubMed, CrossRef
  82. Tuttle DL, Dunn WA Jr. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci. 1995 Jan;108(Pt 1):25-35. PubMed
  83. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta. 2006 Dec;1763(12):1453-62. Review. PubMed, CrossRef
  84. van Zutphen T, van der Klei IJ, Kiel JA. Pexophagy in Hansenula polymorpha. Methods Enzymol. 2008;451:197-215. PubMed, CrossRef
  85. Veenhuis M, Van Dijken JP, Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol. 1983;24:1-82. Review. PubMed, CrossRef
  86. Veenhuis M, Salomons FA, Van Der Klei IJ. Peroxisome biogenesis and degradation in yeast: a structure/function analysis. Microsc Res Tech. 2000 Dec 15;51(6):584-600. Review. PubMed, CrossRef
  87. Wan Y, Saleem RA, Ratushny AV, Roda O, Smith JJ, Lin CH, Chiang JH, Aitchison JD. Role of the histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and regulated expression of oleate-responsive genes. Mol Cell Biol. 2009 May;29(9):2346-58. PubMed, PubMedCentral, CrossRef
  88. Wanders RJ, Duran M, Loupatty FJ. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway. J Inherit Metab Dis. 2012 Jan;35(1):5-12. PubMed, PubMedCentral, [crt id=””]
  89. Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 1999 Dec 31;464(3):123-8. PubMed, CrossRef
  90. Yamashita S, Oku M, Wasada Y, Ano Y, Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J Cell Biol. 2006 Jun 5;173(5):709-17. PubMed, PubMedCentral, CrossRef
  91. Yokota S. Degradation of normal and proliferated peroxisomes in rat hepatocytes: regulation of peroxisomes quantity in cells. Microsc Res Tech. 2003 Jun 1;61(2):151-60. Review. PubMed, CrossRef
  92. Yuan W, Tuttle DL, Shi YJ, Ralph GS, Dunn WA Jr. Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J Cell Sci. 1997 Aug;110 ( Pt 16):1935-45. PubMed
  93. Zhang P, Zhang W, Zhou X, Bai P, Cregg JM, Zhang Y. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Appl Environ Microbiol. 2010 Sep;76(18):6108-18. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.