Ukr.Biochem.J. 2016; Volume 88, Issue 1, Jan-Feb, pp. 31-43

doi: https://doi.org/10.15407/ubj88.01.031

Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

H. V. Danylovych

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: danylovych@biochem.kiev.ua

We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+-dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

Keywords: , , , , ,


References:

  1. Shiryaeva AP, Baydyuk EV, Arkadieva AV, Morozov VI, Sakuta GA, Okovityi SV. Hepatocyte mitochondrion respiratory chain in rats with experimental toxic hepatitis. Tsitologiya. 2007;49(2):125-132. (in Russian). PubMed
  2. Manko BO, Manko VV. Influence of Ca2+ on kinetic parameters of pancreatic acinar mitochondria in situ respiration. Ukr Biokhim Zhurn. 2013 Jul-Aug;85(4):48-60. (in Ukrainian). PubMedCrossRef
  3. Man’ko BO, Man’ko VV. Influence of adenosine diphosphate on respiration of rat pancreatic acinar cells mitochondria in situ. Fiziol Zh. 2013;59(5):61-70. (in Ukrainian). PubMed
  4. Akopova OV, Kolchinskaya LI, Nosar VI, Buryi VA, Mankovska IN, Sagach VF. The effect of ATP-dependent K(+)-channel opener on transmembrane potassium exchange and reactive oxygen species production upon the opening of mitochondrial pore. Ukr Biochem J. 2014 Mar-Apr;86(2):26-40. Russian. PubMed, CrossRef
  5. Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AK. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochim Biophys Acta. 2014 Mar;1837(3):354-65. PubMed, PubMedCentral, CrossRef
  6. Heikal AA. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med. 2010 Apr;4(2):241-63.  PubMedPubMedCentral, CrossRef
  7. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA. 2007 Dec 4;104(49):19494-9. PubMedPubMedCentralCrossRef
  8. Wang HW, Wei YH, Guo HW. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death. Anticancer Agents Med Chem. 2009 Nov;9(9):1012-7. PubMed, CrossRef
  9. Kosterin P, Kim GH, Muschol M, Obaid AL, Salzberg BM. Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J Membr Biol. 2005 Nov;208(2):113-24. PubMed, CrossRef
  10. Shuttleworth CW, Brennan AM, Connor JA. NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci. 2003 Apr 15;23(8):3196-208. PubMed
  11. Shah AT, Demory Beckler M, Walsh AJ, Jones WP, Pohlmann PR, Skala MC. Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma. PLoS One. 2014 Mar 4;9(3):e90746. PubMedPubMedCentral, CrossRef
  12. Stowe DF, Gadicherla AK, Zhou Y, Aldakkak M, Cheng Q, Kwok WM, Jiang MT, Heisner JS, Yang M, Camara AK. Protection against cardiac injury by small Ca(2+)-sensitive K(+) channels identified in guinea pig cardiac inner mitochondrial membrane. Biochim Biophys Acta. 2013 Feb;1828(2):427-42. PubMedPubMedCentral, CrossRef
  13. Staniszewski K, Audi SH, Sepehr R, Jacobs ER, Ranji M. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs. Ann Biomed Eng. 2013 Apr;41(4):827-36. PubMedPubMedCentral, CrossRef
  14. Zinchenko VP, Goncharov NV, Teplova VV, Kasymov VA, Petrova OI, Berezhnov AV, Senchenkov EV, Mindukshev IV, Jenkins RO, Radilov AS. Studies of interaction of intracellular signalling and metabolic pathways under inhibition of mitochondrial aconitase with fluoroacetate. Tsitologiya. 2007;49(12):1023-31. Russian. PubMed
  15. Schaue D, Ratikan JA, Iwamoto KS. Cellular autofluorescence following ionizing radiation. PLoS One. 2012;7(2):e32062. PubMed, PubMedCentral, CrossRef
  16. Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):897-906. Review. PubMedCrossRef
  17. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001 Jun 1;30(11):1191-212. Review. PubMed, CrossRef
  18. Brachmanski M, Gebhard MM, Nobiling R. Separation of fluorescence signals from Ca2+ and NADH during cardioplegic arrest and cardiac ischemia. Cell Calcium. 2004 Apr;35(4):381-91. PubMed, CrossRef
  19. Riess ML, Camara AK, Kevin LG, An J, Stowe DF. Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts. Cardiovasc Res. 2004 Feb 15;61(3):580-90. PubMedCrossRef
  20. Shuttleworth CW. Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation. Neurochem Int. 2010 Feb;56(3):379-86. Review. PubMed, PubMedCentral, CrossRef
  21. Lakowicz JR.Principles of fluorescence spectroscopy. Second edition. Plenium Publisher, New York, 1999. CrossRef
  22. Islam MS, Honma M, Nakabayashi T, Kinjo M, Ohta N. pH dependence of the fluorescence lifetime of FAD in solution and in cells. Int J Mol Sci. 2013 Jan 18;14(1):1952-63. PubMed, PubMedCentral, CrossRef
  23. Michelini LG, Benevento CE, Rossato FA, Siqueira-Santos ES, Castilho RF. Effects of partial inhibition of respiratory complex I on H2O 2 production by isolated brain mitochondria in different respiratory states. Neurochem Res. 2014 Dec;39(12):2419-30.  PubMed, CrossRef
  24. Kosterin SA, Bratkova NF, Kursky MD. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia. 1985 Aug;50(8):1350-61. Russian. PubMed
  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  26. Bailay NTJ. Statistical methods in biology. Great Britain: Cambridge University Press; 1995. CrossRef
  27. Vivian JT, Callis PR. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J. 2001 May;80(5):2093-109. PubMed, PubMedCentral, CrossRef
  28. Postnikova GB, Shekhovtsova EA. Fluorescence studies on the interaction of myoglobin with mitochondria. Biochemistry (Mosc). 2012 Mar;77(3):280-7. PubMed, CrossRef
  29. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008 Feb;10(2):179-206. Review. PubMed, CrossRef
  30. Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem. 1990 Jul 15;265(20):11409-12. Review. PubMed
  31. Hunte C, Palsdottir H, Trumpower BL. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett. 2003 Jun 12;545(1):39-46. Review. PubMed, CrossRef
  32. Iakovenko IN, Zhirnov VV. Sodium azide as indirect nitric oxide donor: researches on the rat aorta isolated segments. Ukr Biokhim Zhurn. 2005 Jul-Aug;77(4):120-3. Russian. PubMed
  33. Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1283-93. Epub 2012 Sep 28. Review. PubMed, CrossRef
  34. Watzke N, Diekert K, Obrdlik P. Electrophysiology of respiratory chain complexes and the ADP-ATP exchanger in native mitochondrial membranes. Biochemistry. 2010 Dec 7;49(48):10308-18. PubMed, CrossRef
  35. Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, Vielhaber S, Seppet E, Striggow F. The regulation of OXPHOS by extramitochondrial calcium. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1018-27. PubMedCrossRef
  36. Csordás G, Várnai P, Golenár T, Sheu SS, Hajnóczky G. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Mol Cell Endocrinol. 2012 Apr 28;353(1-2):109-13. Review. PubMed, PubMedCentral, CrossRef
  37. Kolomiiets OV, Danylovych IuV, Danylovych HV, Kosterin SO. Ca2+/H(+)-exchange in myometrium mitochondria. Ukr Biochem J. 2014 May-Jun;86(3):41-8. Ukrainian. PubMedCrossRef
  38. Kostyuk PG, Kostyuk OP, Lukyanets EA. Intracellular calcium signaling: structures and functions. Kiev: Naukova dumka, 2010. 175 p. (In Ukrainian).
  39. Ponomarenko OV, Babich LH, Horchev VF, Kosterin SO. Studies of Ca2+ -dependent smooth muscle mitochondria swelling using flow cytometry and spermine effects on this process. Ukr Biokhim Zhurn. 2006 Nov-Dec;78(6):38-45. Ukrainian. PubMed
  40. Kandaurova NV, Chunikhin AJu, Babich LG, Shlykov SG, Kosterin SO. Modulators of transmembrane calcium exchange in myometrium mitochondria change their hydrodynamic diameter. Ukr Biokhim Zhurn. 2010 Nov-Dec;82(6):52-7. Ukrainian. PubMed
  41. Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD. In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal Biochem. 2003 Feb 1;313(1):46-52. PubMed
  42. Vadziuk OB. ATP-sensitive K(+)-channels in muscle cells: features and physiological role. Ukr Biochem J. 2014 May-Jun;86(3):5-22. Review. Ukrainian. PubMedCrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.