Ukr.Biochem.J. 2016; Volume 88, Issue 3, May-Jun, pp. 66-77


Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 genes in U87 glioma cells in glutamine deprivation condition

O. H. Minchenko1, A. P. Kharkova1, D. O. Minchenko1,2, L. L. Karbovskyi1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Bohomolets National Medical University, Kyiv, Ukraine

We have studied gene expression of insulin-like growth factor binding proteins in U87 glioma cells upon glutamine deprivation depending on the inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress. We have shown that exposure of control glioma cells upon glutamine deprivation leads to down-regulation of NOV/IGFBP9, WISP1 and WISP2 gene expressions and up-regulation of CYR61/IGFBP10 gene expression at the mRNA level. At the same time, the expression of IGFBP6 and IGFBP7 genes in control glioma cells was resistant to glutamine deprivation. It was also shown that the inhibition of IRE1 modifies the effect of glutamine deprivation on the expression of all studied genes. Thus, the inhibition of IRE1 signaling enzyme enhances the effect of glutamine deprivation on the expression of CYR61 and WISP1 genes and suppresses effect of the deprivation on WISP2 gene expression in glioma cells. Moreover, the inhibition of IRE1 introduces sensitivity of the expression of IGFBP6 and IGFBP7 genes to glutamine deprivation and removes this sensitivity to NOV gene. We have also demonstrated that the expression of all studied genes in glioma cells growing with glutamine is regulated by IRE1 signaling enzyme, because the inhibition of IRE1 significantly down-regulates IGFBP6 and NOV genes and up-regulates IGFBP7, CYR61, WISP1, and WISP2 genes as compared to control glioma cells. The present study demonstrates that glutamine deprivation condition affects most studied IGFBP and WISP gene expressions in relation to IRE1 signaling enzyme function and possibly contributes to slower glioma cell proliferation upon inhibition of IRE1.

Keywords: , , , , , , , , ,


  1. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008 Dec;8(12):915-28. PubMed, CrossRef
  2. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004 Oct 15;306(5695):457-61. PubMed, CrossRef
  3. Kuijjer ML, Peterse EF, van den Akker BE, Briaire-de Bruijn IH, Serra M, Meza-Zepeda LA, Myklebost O, Hassan AB, Hogendoorn PC, Cleton-Jansen AM. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma. BMC Cancer. 2013 May 20;13:245. PubMed, PubMedCentralCrossRef
  4. Lee J, Ozcan U. Unfolded protein response signaling and metabolic diseases. J Biol Chem. 2014 Jan 17;289(3):1203-11. Review. PubMed, PubMedCentral, CrossRef
  5. Minchenko DO, Kharkova AP, Karbovskyi LL, Minchenko OH. Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocr Regul. 2015 Apr;49(2):73-83. PubMed, CrossRef
  6. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer. 2014 May;14(5):329-41. Review. PubMed, CrossRef
  7. Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 2014 Feb;1843(2):372-86.  PubMed, CrossRef
  8. Bach LA, Fu P, Yang Z. Insulin-like growth factor-binding protein-6 and cancer. Clin Sci (Lond). 2013 Feb;124(4):215-29. Review. PubMed, CrossRef
  9. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zhang CY, Zen K. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014 Jan 1;192(1):437-46. PubMed, CrossRef
  10. Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, Sorensen PH, Seth A. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal. 2012 Dec 18;5(255):ra92. PubMed, CrossRef
  11. Wagener J, Yang W, Kazuschke K, Winterhager E, Gellhaus A. CCN3 regulates proliferation and migration properties in Jeg3 trophoblast cells via ERK1/2, Akt and Notch signalling. Mol Hum Reprod. 2013 Apr;19(4):237-49. PubMed, CrossRef
  12. Schlegelmilch K, Keller A, Zehe V, Hondke S, Schilling T, Jakob F, Klein-Hitpass L, Schütze N. WISP 1 is an important survival factor in human mesenchymal stromal cells. Gene. 2014 Nov 10;551(2):243-54.  PubMed, CrossRef
  13. Gurbuz I, Chiquet-Ehrismann R. CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol. 2015 May;62:142-6. PubMedCrossRef
  14. Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001 Dec 15;61(24):8917-23. PubMed
  15. Yadav RK, Chae SW, Kim HR, Chae HJ. Endoplasmic reticulum stress and cancer. J Cancer Prev. 2014 Jun;19(2):75-88. PubMedPubMedCentral, CrossRef
  16. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013 Sep;12(9):703-19. PubMed, CrossRef
  17. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ. Endoplasmic reticulum stress in malignancy. Cancer Cell. 2014 May 12;25(5):563-73. PubMed, CrossRef
  18. Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med. 2014 Jun;46(4):233-43.  PubMed, CrossRef
  19. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007 Jul 15;67(14):6700-7. PubMed, CrossRef
  20. Auf G, Jabouille A, Guérit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010 Aug 31;107(35):15553-8. PubMed, CrossRef
  21. Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013 Dec 13;13:597. PubMedPubMedCentral, CrossRef
  22. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007 Jul 6;27(1):53-66. PubMed, CrossRef
  23. Pluquet O, Dejeans N, Bouchecareilh M, Lhomond S, Pineau R, Higa A, Delugin M, Combe C, Loriot S, Cubel G, Dugot-Senant N, Vital A, Loiseau H, Gosline SJ, Taouji S, Hallett M, Sarkaria JN, Anderson K, Wu W, Rodriguez FJ, Rosenbaum J, Saltel F, Fernandez-Zapico ME, Chevet E. Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα. Cancer Res. 2013 Aug 1;73(15):4732-43.  PubMed, CrossRef
  24. Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C901-7. PubMed, CrossRef
  25. Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Hlushchak NA, Kovalevska OV, Karbovskyi LL, Minchenko OH. Acute L-glutamine deprivation affects the expression of TP53-related protein genes in U87 glioma cells. Fiziol Zh. 2014;60(4):11-21. PubMed
  26. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008 Dec 2;105(48):18782-7. PubMedPubMedCentral, CrossRef
  27. Fogal V, Babic I, Chao Y, Pastorino S, Mukthavaram R, Jiang P, Cho YJ, Pingle SC, Crawford JR, Piccioni DE, Kesari S. Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget. 2015 Jan 20;6(2):1157-70. PubMed, PubMedCentral, CrossRef
  28. Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S, Moncada S. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci USA. 2011 Dec 27;108(52):21069-74.  PubMed, PubMedCentral, CrossRef
  29. Krall AS, Christofk HR. Rethinking glutamine addiction. Nat Cell Biol. 2015 Dec;17(12):1515-7.  PubMed, CrossRef
  30. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PØ, Weinstock A, Wagner A, Lindsay SL, Hock AK, Barnett SC, Ruppin E, Mørkve SH, Lund-Johansen M, Chalmers AJ, Bjerkvig R, Niclou SP, Gottlieb E. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015 Dec;17(12):1556-68. PubMed, PubMedCentral, CrossRef
  31. Huber AL, Lebeau J, Guillaumot P, Pétrilli V, Malek M, Chilloux J, Fauvet F, Payen L, Kfoury A, Renno T, Chevet E, Manié SN. p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose. Mol Cell. 2013 Mar 28;49(6):1049-59. PubMed, CrossRef
  32. Frewer KA, Sanders AJ, Owen S, Frewer NC, Hargest R, Jiang WG. A role for WISP2 in colorectal cancer cell invasion and motility. Cancer Genomics Proteomics. 2013 Jul-Aug;10(4):187-96. PubMed
  33. Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am. 2012 Jun;41(2):335-50, vi. Review. PubMed, PubMedCentral, CrossRef
  34. Minchenko OH, Kharkova AP, Minchenko DO, Karbovskyi LL. Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling. Ukr Biochem J. 2015 Nov-Dec;87(6):52-63. PubMed, CrossRef
  35. Minchenko OH, Tsymbal DO, Moenner M, Minchenko DO, Kovalevska OV, Lypova NM. Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2015;2(1):18-29.  CrossRef
  36. Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Afonyushkin T, Gruber F, Breuss J, Minchenko A, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Erne P, Binder BR, Leitinger N. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions.  Circ Res. 2006 Oct 13;99(8):900-8. PubMed, CrossRef
  37. Cheng G, Zhang H, Zhang L, Zhang J. Cyr61 promotes growth of glioblastoma in vitro and in vivo. Tumour Biol. 2015 Apr;36(4):2869-73.  PubMed, CrossRef
  38. Hou CH, Lin FL, Hou SM1, Liu JF. Cyr61 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by Raf-1/MEK/ERK/Elk-1/TWIST-1 signaling pathway. Mol Cancer. 2014 Oct 19;13:236. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.