Ukr.Biochem.J. 2016; Volume 88, Issue 4, Jul-Aug, pp. 75-84

doi: https://doi.org/10.15407/ubj88.04.075

A mathematical model of the metabolic process of atherosclerosis

V. I. Grytsay

Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv;
e-mail: vgrytsay@bitp.kiev.ua

A mathematical model of the metabolic process of atherosclerosis is constructed. The functioning of the polyenzymatic prostacyclin-thromboxane system of blood and the influence of a level of “bad cholesterol”, namely low density lipoproteins (LDL), on it are studied. With the help of the numerical experiment, we analyze the influence of the concentration of molecules of fat on hemostasis of blood in blood vessels. The kinetic curves for components of the system, phase-periodic bifurcation diagrams, attractors for various modes, and Poincaré cross-section and image of a strange attractor are constructed. The complete spectra of Lyapunov’s exponents, divergencies, KS-entropies, predictability horizons, and Lyapunov dimensions of the fractality of strange attractors are calculated. Conclusions about the structural-functional connections, which determine the dependence of hemostasis of a circulatory system on the level of cholesterol in blood are drawn.

Keywords: , , , , , ,


References:

  1. Varfolomeev SD, Mevkh AT. Prostaglandins – Molecular Bioregulators. M.: Moscow University, 1985. 308 p. (In Russian).
  2. Varfolomeev SD, Mevkh AT, Gachok VP. Kinetic model of a multienzyme system of blood prostanoid synthesis. I. Mechanism of stabilization of thromboxane and prostacyclin levels. Mol Biol (Mosk). 1986 Jul-Aug;20(4):957-67. (In Russian). PubMed
  3. Varfolomeev SD, Gachok VP, Mevkh AT. Kinetic behavior of the multienzyme system of blood prostanoid synthesis. Biosystems. 1986;19(1):45-54. PubMed, CrossRef
  4. Grytsay VI. The conditions of the self-organization in the multienzyme prostacyclin-thromboxane system. Visn Kyiv Univ. 2002;(3):372-376.
  5. Grytsay VI, Gachok VP. The modes of self-organization in prostacyclin-thromboxane system. Visn Kyiv Univ. 2002;(4):365-370.
  6. Grytsay VI, Gachok VP. Ordered structures in the mathematical system of prostacyclin and thromboxane model. Visn Kyiv Univ. Ser. Fiz.-Mat. Nauk. 2003;(1):338-343.
  7. Grytsay VI. Modeling of processes in the multienzyme prostacyclin and thromboxane system. Visn Kyiv Univ. 2003;(4):379-384.
  8. Gachok VP. Kinetics of Biochemical Processes.  K.: Naukova Dumka, 1988. 224 p. (in Russian).
  9. Gachok VP. Strange Attractors in Biosystems.  K.: Naukova Dumka, 1989. 238 p. (in Russian).
  10. Libby P. Atherosclerosis: the new view. Sci Am. 2002 May;286(5):46-55. PubMed, CrossRef
  11. Verkhusha VV, Staroverov VM, Vrzhesh PV. The model of adhesive interaction of cells in the flow of a fluid. Biol Membr. 1994;11(4):437-450.
  12. Baluda VP, Baluda MV, Deyanov II. Physiology of the System of Hemostasis. Moscow: Meditsina, 1995. 243 p.
  13. Shitikova AS. Thrombocytic Hemostasis. St.-Petersburg, 2000. 225 p.
  14. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995 Jun 1;91(11):2844-50. PubMed
  15. Davies MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation. 1996 Oct 15;94(8):2013-20. PubMed, CrossRef
  16. Berliner J, Leitinger N, Watson A, Huber J, Fogelman A, Navab M. Oxidized lipids in atherogenesis: formation, destruction and action. Thromb Haemost. 1997 Jul;78(1):195-9. PubMed
  17. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997 Aug 22;272(34):20963-6. PubMedCrossRef
  18. Anishchenko VS. Complex Oscillations in Simple Systems. Moscow, Nauka, 1990. 312 p. (In Russian).
  19. Kuznetsov SP. Dynamical Chaos. Moscow: Nauka, 2001, 296 p. (In Russian).
  20. Kosterin SO, Miroshnychenko MS, Davydovska TL, Tsymbaliuk OV, Prylutskyy YuI. Phenomenologic mechanokinetic model of Ca2+-dependent contraction-relaxation of smooth muscle. Ukr Biokhim Zhurn. 2001 Nov-Dec;73(6):138-42. (In Ukrainian). PubMed
  21. Kosterin SO, Miroshnychenko MS, Prylutskyy YuI, Davydovska TL, Tsymbaliuk OV. Mathematical model of trans-sarcomere exchange of calcium ions and Ca2+-dependent control of smooth muscle contractile activity. Ukr Biokhim Zhurn. 2002 Mar-Apr;74(2):128-33. (In Ukrainian). PubMed
  22. Suprun AD, Prylutsky YuI, Shut AM, Miroshnichenko MS. Towards a Dynamical Model of Skeletal Muscle. Ukr J Phys. 2003;48(7):704-7.
  23. Prylutskyy YuI, Shut AM, Miroshnychenko MS, Suprun AD. Thermodynamic and Mechanical Properties of Skeletal Muscle Contraction. Int J Thermophys. 2005 May;26(3):827-35. CrossRef
  24. Kosterin SO, Prylutskyy YuI, Borysko PO, Miroshnychenko MS. Kinetic analysis of the influence of inverse effectors (inhibitors and activators) on enzymatic (transport) activity of proteins. Ukr Biokhim Zhurn. 2005 Jan-Feb;77(1):113-25. (In Ukrainian). PubMed
  25. Suprun AD, Shut AM, Prylutskyy YuI. Simulation of the Hill Equation for Fiber Skeletal Muscle Contraction. Ukr J  Phys. 2007;52(10):997-1000.
  26. Grytsay VI, Musatenko IV. Self-organization and fractality in a metabolic processes of the Krebs cycle. Ukr Biokhim Zhurn. 2013 Sep-Oct;85(5):191-200. PubMedCrossRef
  27. Grytsay VI, Musatenko IV. Self-organization and chaos in the metabolism of a cell. Biopolym Cell. 2014;30(5):404-9. CrossRef
  28. Pesin YaB. Characteristic Lyapunov indices and the ergodic theory. Usp Mat Nauk. 1977;32(4):55-112.
  29. Kolmogorov AN. On the entropy per unit time as a metric invariant of automorphisms. DAN SSSR. 1959;154:754-755.
  30. Kaplan JL, Yorke JA. The onset of chaos in a fluid flow model of Lorenz. Ann N Y Acad Sci. 1979 Feb;316(1):400-7.  CrossRef
  31. Kaplan JL, Yorke JA. A chaotic behaviour of multidimensional differential equations, in: Functional Differential Equations of Fixed Points, edited by H. O. Peitgen, H. O. Walther, Springer, Berlin, 1979, pp. 204-227.  CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.