Ukr.Biochem.J. 2016; Volume 88, Issue 4, Jul-Aug, pp. 66-74

doi: https://doi.org/10.15407/ubj88.04.066

The use of the Petri net method in the simulation modeling of mitochondrial swelling

Yu. V. Danylovych, A. Y. Chunikhin,  G. V. Danylovych, O. V. Kolomiets

Palladin Institute of Biochemistry, National Academy
of Sciences of Ukraine, Kyiv;
e-mail: danylovych@biochem.kiev.ua

Using photon correlation spectroscopy, which allows investigating changes in the hydrodynamic dia­meter of the particles in suspension, it was shown that ultrahigh concentrations of Ca2+ (over 10 mM) induce swelling of isolated mitochondria. An increase in hydrodynamic diameter was caused by an increase of non-specific mitochondrial membrane permeability to Ca ions, matrix Ca2+ overload, activation of ATP- and Ca2+-sensitive K+-channels, as well as activation of cyclosporin-sensitive permeability transition pore. To formalize the experimental data and to assess conformity of experimental results with theoretical predictions we developed a simulation model using the hybrid functional Petri net method.

Keywords: , , , ,


References:

  1. Brocard JB, Rintoul GL, Reynolds IJ. New perspectives on mitochondrial morphology in cell function. Biol Cell. 2003 Jul;95(5):239-42. Review. PubMed, CrossRef
  2. Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503-36. Review. PubMed, CrossRef
  3. Kaasik A, Safiulina D, Zharkovsky A, Veksler V. Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol. 2007 Jan;292(1):C157-63. Review. PubMed, CrossRef
  4. Nowikovsky K, Schweyen RJ, Bernardi P. Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta. 2009 May;1787(5):345-50. Review. PubMed, CrossRef
  5. Ponomarenko OV, Babich LH, Horchev VF, Kosterin SO. Studies of Ca2+-dependent smooth muscle mitochondria swelling using flow cytometry and spermine effects on this process. Ukr Biokhim Zhurn. 2006 Nov-Dec;78(6):38-45. (In Ukrainian). PubMed
  6. Belosludtsev KN, Belosludtseva NV, Dubinin MV, Gudkov SV, Pen’kov NV, Samartsev VN. The influence of spermine on Ca(2+)-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,Ω-hexadecanedioic acids. Biofizika. 2014 Sep-Oct;59(5):895-901. (In Russian). PubMed
  7. Merkus H.G. Particle size measurements. Fundamentals, practice, quality. Springer, 2009. 533 p.
  8. Koch I., Reisig W., Schreiber F. (eds.) Modeling in Systems Biology. The Petri Net Approach. Springer, 2011. 388 p.
  9. Wingender E. (ed.) Biological Petri Nets. IOSPress, 2011. 314 p.
  10. Ritter U, Prylutskyy YuI, Evstigneev MP, Davidenko NA, Cherepanov VV, Senenko AI, Marchenko OA, Naumovets AG. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, Carbon Nanostruct. 2015; 23(6):530-534.  CrossRef
  11. Kandaurova NV, Chunikhin OIu, Babich LG, Shlykov SG, Kosterin SO. Modulators of transmembrane calcium exchange in myometrium mitochondria change their hydrodynamic diameter. Ukr Biokhim Zhurn. 2010 Nov-Dec;82(6):52-7. (In Ukrainian). PubMed
  12. Kosterin SA, Bratkova NF, Kurskiy MD. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia. 1985 Aug;50(8):1350-61. Russian. PubMed
  13. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54.  PubMed, CrossRef
  14. Nagasaki M. et al. Foundations of Systems Biology. Using Cell Illustrator and Pathway Databases. Springer, 2009. 166 p. CrossRef
  15. Ryu SY, Beutner G, Dirksen RT, Kinnally KW, Sheu SS. Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett. 2010 May 17;584(10):1948-55. Review. PubMed, PubMedCentral, CrossRef
  16. Babich LH. Membrane mechanisms of regulating Ca ion concentration in smooth muscle cells. Ukr Biokhim Zhurn. 1999 Sep-Oct;71(5):10-22. (In Ukrainian). PubMed
  17. Chan L, Wong YC. Cytochemical localisation and characterisation of proteoglycans (glycosaminoglycans) in the epithelial-stromal interface of the seminal vesicle of the guinea pig. J Anat. 1992 Feb;180(Pt 1):41-56. PubMed, PubMedCentral
  18. Wieraszko A. Evidence that ruthenium red disturbs the synaptic transmission in the rat hippocampal slices through interacting with sialic acid residues. Brain Res. 1986 Jul 16;378(1):120-6. PubMed, CrossRef
  19. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):907-12. Review. PubMed, CrossRef
  20. Herrmann-Frank A, Darling E, Meissner G. Functional characterization of the Ca(2+)-gated Ca2+ release channel of vascular smooth muscle sarcoplasmic reticulum. Pflugers Arch. 1991 May;418(4):353-9. PubMed, CrossRef
  21. Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1283-93. Review. PubMed, CrossRef
  22. Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM, Anderson PG. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem. 2000 Jul 7;275(27):20474-9. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.