Ukr.Biochem.J. 2017; Volume 89, Issue 1, Jan-Feb, pp. 50-58

doi: https://doi.org/10.15407/ubj89.01.050

Fecal short-chain fatty acids at different time points after ceftriaxone administration in rats

Yu. V. Holota1, O. O. Holubenko2, A. M. Ostapchuk2,
T. M. Serhiychuk1, L. V. Zakordonets3, G. M. Tolstanova1

1Educational and Scientific Center “Institute of Biology and Medicine”,
Taras Shevchenko National University of Kyiv, Ukraine;
2D.K. Zabolotny Institute of Microbiology and Virology, National
Academy of Sciences of Ukraine, Kyiv;
3Bogomolets National Medical University, Kyiv, Ukraine
е-mail: gtolstanova@gmail.com

Short-chain fatty acids (SCFAs) are major products of the microbial fermentation of dietary fiber in the colon. Recent studies suggest that these products of microbial metabolism in the gut act as signaling molecules, influence host energy homeostasis and play major immunological roles. In the present study, defined the long-term effects of ceftriaxone administration on the fecal SCFAs concentration in Wistar rats. Ceftriaxone (300 mg/kg, i.m.) was administered daily for 14 days. Rats were euthanized in 1, 15 and 56 days after ceftriaxone withdrawal. Caecal weight and fecal concentration of SCFAs by gas chromatography were measured. Ceftriaxone administration induced time-dependent rats’ caecal enlargement through accumulation of undigestable substances. In 1 day after ceftriaxone withdrawal, the concentrations of acetic, propionic, butyric acids and total SCFAs were decreased 2.9-, 13.8-, 8.5-, 4.8-fold (P < 0.05), respectively. Concentration of valeric, isovaleric and caproic acids was below the detectable level. That was accompanied by decreased 4.3-fold anaerobic index and increased the relative amount of acetic acid (P < 0.05). In 56 days, concentration of SCFAs was still below control value but higher than in 1 day (except propionic acid). Anaerobic index was lower 1.3-fold (P < 0.05) vs. control. Conclusion: antibiotic therapy induced long-term disturbance in colonic microbiota metabolic activity.

Keywords: , , ,


References:

  1. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, Oravecz-Wilson K, Wu SR, Sun Y, Rossi C, Fujiwara H, Byun J, Shono Y, Lindemans C, Calafiore M, Schmidt TC, Honda K, Young VB, Pennathur S, van den Brink M, Reddy P. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016 May;17(5):505-13. PubMed, PubMedCentral, CrossRef
  2. Vogt SL, Peña-Díaz J, Finlay BB. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe. 2015 Aug;34:106-15. Review. PubMed, CrossRef
  3. Lee WJ, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014 Jun;10(6):416-24. Review. PubMed, CrossRef
  4. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006 Mar;40(3):235-43. Review. PubMed
  5. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013 Sep;54(9):2325-40.  PubMed, PubMedCentral, CrossRef
  6. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011 May 4;13(5):517-26. PubMed, PubMedCentral, CrossRef
  7. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003 Mar 28;278(13):11312-9. PubMed, CrossRef
  8. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003 Jul 11;278(28):25481-9.  PubMed, CrossRef
  9. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun. 2003 Apr 18;303(4):1047-52. PubMed, CrossRef
  10. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw. 2014 Dec;14(6):277-88. Review. PubMed, PubMedCentral, CrossRef
  11. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011 Oct;3(10):858-76. Review. PubMed, PubMedCentral, CrossRef
  12. Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, Stöckl J, Hörl WH, Zlabinger GJ. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000 Dec;14(15):2380-2. PubMed, CrossRef
  13. Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem. 2001 Nov 30;276(48):44641-6. PubMed, CrossRef
  14. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013 Dec 19;504(7480):446-50.  PubMed, CrossRef
  15. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010 Nov;156(Pt 11):3216-23. Review. PubMed, CrossRef
  16. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics and new diagnoses of Crohn’s disease and ulcerative colitis. Am J Gastroenterol. 2011 Dec;106(12):2133-42. PubMed, CrossRef
  17. Høverstad T, Carlstedt-Duke B, Lingaas E, Norin E, Saxerholt H, Steinbakk M, Midtvedt T. Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects. Scand J Gastroenterol. 1986 Oct;21(8):997-1003. PubMed, CrossRef
  18. Gustafsson A, Lund-Tønnesen S, Berstad A, Midtvedt T, Norin E. Faecal short-chain fatty acids in patients with antibiotic-associated diarrhoea, before and after faecal enema treatment. Scand J Gastroenterol. 1998 Jul;33(7):721-7. PubMed, CrossRef
  19. Bender A, Breves G, Stein J, Leonhard-Marek S, Schröder B, Winckler C. Colonic fermentation as affected by antibiotics and acidic pH: Application of an in vitro model. Z Gastroenterol. 2001 Nov;39(11):911-8. PubMed, CrossRef
  20. Holota YuV, Olefir YaA, Dovbynchuk TV, Tolstanova GM. Carbohydrate composition of rat intestine surface mucus layer after ceftriaxone treatment. Ukr Biochem J. 2016;88(6):35-44.   CrossRef
  21. Zakordonets L., Tolstanova G., Yankovskiy D., Dyment H., Kramarev S.  Different regimes of multiprobiotic for prevention of immediate and delayed side effects of antibiotic therapy in children. Res J Pharmac Biol Chem Sci. 2016; 7(3): 2194-2201.
  22. Campbell BJ, Yu LG, Rhodes JM. Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj J. 2001 Nov-Dec;18(11-12):851-8. Review. PubMed, CrossRef
  23. Xiao J, Metzler-Zebeli BU, Zebeli Q. Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits. Nutrients. 2015 Sep 28;7(10):8348-65. Review. PubMed, PubMedCentral, CrossRef
  24. Tulstrup MV, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS One. 2015 Dec 21;10(12):e0144854. PubMed, PubMedCentral, CrossRef
  25. Loesche WJ. Effect of bacterial contamination on cecal size and cecal contents of gnotobiotic rodents. J Bacteriol. 1969 Aug;99(2):520-6. PubMed, PubMedCentral
  26. Meijer-Severs GJ, Van Santen E, Meijer BC. Short-chain fatty acid and organic acid concentrations in feces of healthy human volunteers and their correlations with anaerobe cultural counts during systemic ceftriaxone administration. Scand J Gastroenterol. 1990 Jul;25(7):698-704. PubMed, CrossRef
  27. Holota Y., Dzyubenko N., Ostapchuk A., Dovbynchuk T., Serhiychuk T., Putnikov A., Kaji I., Tolstanova G. Long-Term Effect of Antibiotic Therapy on Colonic Levels of Short-chain Fatty Acids (SCFA), FFA2 and FFA3 Receptors. The 15th Int. Conf. of Ulcer Research. Ottawa, Canada, 2015. P. 48.
  28. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009 Oct 29;461(7268):1282-6. PubMed, PubMedCentral, CrossRef
  29. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014 Aug;63(8):1275-83. PubMed, CrossRef
  30. Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013 Sep;51(9):2884-92. PubMed, PubMedCentral, CrossRef
  31. Chen HM, Yu YN, Wang JL, Lin YW, Kong X, Yang CQ, Yang L, Liu ZJ, Yuan YZ, Liu F, Wu JX, Zhong L, Fang DC, Zou W, Fang JY. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr. 2013 May;97(5):1044-52. PubMed, CrossRef
  32. Ardatskaya MD, Minushkin ON. Modern principles of diagnostics and pharmacological correction. Gastroenterology, Suppl. J. Consilium Medicum. 2006;8(2): 4-17. (In Russian).
  33. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007 May 28;13(20):2826-32. PubMed, PubMedCentral
  34. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240. PubMed, PubMedCentral, CrossRef
  35. Kendrick SF, O’Boyle G, Mann J, Zeybel M, Palmer J, Jones DE, Day CP. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology. 2010 Jun;51(6):1988-97. PubMed, CrossRef
  36. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014 Jun;8(6):1323-35. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.