Ukr.Biochem.J. 2017; Volume 89, Issue 2, Mar-Apr, pp. 92-98


Rat liver arginase system under acetaminophen-induced toxic injury and protein deprivation

H. P. Kopylchuk, I. M. Nykolaichuk, O. M. Zhuretska

Yuriy Fedkovych Chernivtsi National University, Ukraine;
Institute of Biology, Chemistry and Bioresourses, Chernivtsi, Ukraine;

Arginase activity and L-arginine content in both cytosolic and mitochondrial fractions of rat liver cells under the conditions of toxic injury on the background of protein deprivation was studied. The most significant reduction of arginase activity in liver cells and depletion of L-arginine pool was found in rats with toxic acetaminophen-induced liver injury maintained on the ration balanced by all nutrients as well as in protein deficiency rats. It was concluded that reduction of the arginase activity in the cytosolic fraction of rat liver cells, combined with simultaneous decrease of L-arginine content, may be considered as one of the mechanisms of ornithine cycle disturbance. The decline of activity of mitochondrial isoform of arginase II, for certain, is related with activation of NO-synthase system.

Keywords: , , , ,


  1. Grover Z, Ee LC. Protein energy malnutrition. Pediatr Clin North Am. 2009 Oct;56(5):1055-68. Review. PubMed, CrossRef
  2. Pencharz PB. Protein and energy requirements for ‘optimal’ catch-up growth. Eur J Clin Nutr. 2010 May;64 Suppl 1:S5-7. Review. PubMed, CrossRef
  3. Martynova EA, Gapparov MM. Energy-proteolysis and regulation of protein metabolism. Vopr Pitan. 2007;76(1):4-13. Review. (In Russian). PubMed
  4. Bémeur C, Desjardins P, Butterworth RF. Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J Nutr Metab. 2010;2010:489823. PubMed, PubMedCentral, CrossRef
  5. Norman K, Valentini L, Lochs H, Pirlich M. Protein catabolism and malnutrition in liver cirrhosis – impact of oral nutritional therapy. Z Gastroenterol. 2010 Jul;48(7):763-70. Review. German. PubMed, CrossRef
  6. Beger RD, Bhattacharyya S, Yang X, Gill PS, Schnackenberg LK, Sun J, James LP. Translational biomarkers of acetaminophen-induced acute liver injury. Arch Toxicol. 2015 Sep;89(9):1497-522. Review. PubMed, PubMedCentral, CrossRef
  7. Singh D, Cho WC, Upadhyay G. Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview. Front Physiol. 2016 Jan 26;6:363. Review. PubMed, PubMedCentral, CrossRef
  8. Kučera O, Endlicher R, Rychtrmoc D, Lotková H, Sobotka O, Červinková Z. Acetaminophen toxicity in rat and mouse hepatocytes in vitro. Drug Chem Toxicol. 2016 Dec 14:1-9. PubMed, CrossRef
  9. Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol. 2001 Jan;31(1):55-138. Review. PubMed, CrossRef
  10. Chrzanowska A, Graboń W, Mielczarek-Puta M, Barańczyk-Kuźma A. Significance of arginase determination in body fluids of patients with hepatocellular carcinoma and liver cirrhosis before and after surgical treatment. Clin Biochem. 2014 Aug;47(12):1056-9. PubMed, CrossRef
  11. Vorobets ZD, Efremova UP, Fafula RV, Yakubets OI. Role of arginase system in human organism in development of pathological processes. Clin Experim Pathol. 2012; 3(41): 153-160. (In Ukrainian).
  12. Sharma V, Ten Have GA, Ytrebo L, Sen S, Rose CF, Dalton RN, Turner C, Revhaug A, van-Eijk HM, Deutz NE, Jalan R, Mookerjee RP, Davies NA. Nitric oxide and L-arginine metabolism in a devascularized porcine model of acute liver failure. Am J Physiol Gastrointest Liver Physiol. 2012 Aug 1;303(3):G435-41. PubMed, PubMedCentral, CrossRef
  13. Racke K, Warnken M. L-Arginine Metabolic Pathways. Open Nitric Oxide J. 2010 May; 2(2): 9-19. CrossRef
  14. Morris SM Jr. Arginine metabolism: boundaries of our knowledge. J Nutr. 2007 Jun;137(6 Suppl 2):1602S-1609S. Review. PubMed
  15. Tong BC, Barbul A. Cellular and physiological effects of arginine. Mini Rev Med Chem. 2004 Oct;4(8):823-32. Review. PubMed, CrossRef
  16. Ash DE. Structure and function of arginases. J Nutr. 2004 Oct;134(10 Suppl):2760S-2764S. Review. PubMed
  17. Colleluori DM, Morris SM Jr, Ash DE. Expression, purification, and characterization of human type II arginase. Arch Biochem Biophys. 2001 May 1;389(1):135-43. PubMed, CrossRef
  18. Cederbaum SD, Yu H, Grody WW, Kern RM, Yoo P, Iyer RK. Arginases I and II: do their functions overlap? Mol Genet Metab. 2004 Apr;81(Suppl 1):S38-44. Review. PubMed, CrossRef
  19. Warnken M, Haag S, Matthiesen S, Racké K. Arginase isoenzymes show differential expression and function in human and rat pulmonary fibroblasts. Naunyn Schmiedebergs Arch Pharmacol. 2007;375:67.
  20. Mashiko S, Ishihara A, Iwaasa H, Sano H, Ito J, Gomori A, Oda Z, Moriya R, Matsushita H, Jitsuoka M, Okamoto O, MacNeil DJ, Van der Ploeg LH, Fukami T, Kanatani A. A pair-feeding study reveals that a Y5 antagonist causes weight loss in diet-induced obese mice by modulating food intake and energy expenditure. Mol Pharmacol. 2007 Feb;71(2):602-8. PubMed, CrossRef
  21. Stefanov OV. Preclinical studies of drugs. Kyiv: Avicenna, 2001. 527 p. (In Ukrainian).
  22. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993 Nov;123(11):1939-51. PubMed
  23. Kopyl’chuk GP, Buchkovskaia IM. L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation. Vopr Pitan. 2014;83(4):15-21. (In Russian). PubMed
  24. Akopova OV, Sagach VF. Effect of Ca2+ on induction of the mitochondrial pore opening in the rat myocardium. Ukr Biokhim Zhurn. 2004 Jan-Feb;76(1):48-55. (In Russian). PubMed
  25. Marchenko MM, Kopyl’chuk HP, Shmarakov IO, Buchkovs’ka IM. Activity of enzymatic detoxification systems in the mice liver under conditions of different retinoid provision]. Ukr Biokhim Zhurn. 2012 Mar-Apr;84(2):42-7. (In Ukrainian). PubMed
  26. Peretiatko YuV, Sybirna NO. Particularities of arginase and NO-synthase pathways of L-arginine conversion in the leucocytes of peripheral blood under the X-ray radiation. Ukr Biokhim Zhurn. 2009 Mar-Apr;81(2):40-8. (In Ukrainian). PubMed
  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
  28. Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr. 2002;22:87-105. Review. PubMed, CrossRef
  29. Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients. 2015 Feb 18;7(3):1426-63. Review. PubMed, PubMedCentral, CrossRef
  30. Wu G, Knabe DA, Kim SW. Arginine nutrition in neonatal pigs. J Nutr. 2004 Oct;134(10 Suppl):2783S-2790S. Review. PubMed
  31. van de Poll MC, Siroen MP, van Leeuwen PA, Soeters PB, Melis GC, Boelens PG, Deutz NE, Dejong CH. Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr. 2007 Jan;85(1):167-72. PubMed
  32. van de Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr. 2004 Feb;79(2):185-97. PubMed
  33. Kopylchuk GP, Voloshchuk ON, Buchkovskaia IM., Davydenko IS. Morphologic characteristic of the rat kidney after acetaminophen-induced nephrotoxicity on the background of alimentary deprivation of protein. Morphologia. 2015; 9(3): 28-30. (In Russian).
  34. Ferents IV, Brodyak IV, Lyuta MIa, Burda VA, Fedorovych AM, Sybirna NO. The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats. Ukr Biokhim Zhurn. 2012 May-Jun;84(3):55-62. (In Ukrainian). PubMed
  35. Li H, Poulos TL. Structure-function studies on nitric oxide synthases. J Inorg Biochem. 2005 Jan;99(1):293-305. Review. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.