Ukr.Biochem.J. 2017; Volume 89, Issue 4, Jul-Aug, pp. 13-21

doi: https://doi.org/10.15407/ubj89.04.013

Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600: binding of albumin, biocompatibility, biodistribution and potential crossing the blood-brain barrier in rats

B. O. Chekh1, M. V. Ferens2, D. D. Ostapiv1, V. Y. Samaryk2,
S. M. Varvarenko2, V. V. Vlizlo1

1Institute of Animal Biology, NAAS of Ukraine, Lviv;
2National University “Lviv Polytechnic”, Ukraine;
e-mail: bogdanchekh@gmail.com

The aim of our work was to study biological properties of the polymer based on pseudo-polyamino acids GluLa-DPG-PEG600, its ability to bind albumin, as well as its localization in rat body and influence on physio­logical and functional state of rat kidneys and liver. We have found the ability of GluLa-DPG-PEG600 to bind bovine serum albumin (BSA) using electrophoresis in 5% polyacrylamide gel. Structural and functional state of the liver and kidneys of rats after injections of polymer were investigated by histological analysis of organs and determination the activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase and content of cholesterol and creatinine in blood. Our results showed little toxic effect of GluLa-DPG-PEG600 on rat body. Using fluorescent microscopy we have studied polymer in complex with BSA distribution in rat body: after intravenous injection polymer are localized in kidneys and spleen, and after intramuscular – in liver and brain. It has been shown that polymer passed through the blood-brain barrier and are localized in the immune organ – spleen, indicating GluLa-DPG-PEG600 as a potential drug transporter.

Keywords: , , ,


References:

  1. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999 Apr;10(2):123-9. PubMed, CrossRef
  2. Hua J, Li Z, Xia W, Yang N, Gong J, Zhang J, Qiao C. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:879-92.  PubMed, CrossRef
  3. Xu S, Wang Z, Gao Y, Zhang S, Wu K. Adsorption of Rare Earths(Ⅲ) Using an Efficient Sodium Alginate Hydrogel Cross-Linked with Poly-γ-Glutamate. PLoS One. 2015 May 21;10(5):e0124826. PubMed, PubMedCentral, CrossRef
  4. Watkins KA, Chen R. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules. Int J Pharm. 2015 Jan 30;478(2):496-503.  PubMed, CrossRef
  5. Rajan YC, Inbaraj BS, Chen BH. In vitro adsorption of aluminum by an edible biopolymer poly(γ-glutamic acid). J Agric Food Chem. 2014 May 21;62(20):4803-11.  PubMed, CrossRef
  6. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001 Jul;101(7):1869-79. PubMed, CrossRef
  7. Arakelova E, Khachatryan A, Avjyan K, Farmazyan Z, Mirzoyan A., Savchenko L, Ghazaryan S, Arsenyan F. Zinc oxide nanocomposites with antitumor activity. Nat Sci. 2010;2(12):1341-1348. CrossRef
  8. Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactide acid-co-lysine). J Am Chem Soc. 1993;115(23):11010-11011.  CrossRef
  9. Schakenraad JM, Dijkstra PJ. Biocompatibility of poly (DL-lactic acid/glycine) copolymers. Clin Mater. 1991;7(3):253-69. PubMed, CrossRef
  10. Díaz A, Katsarava R, Puiggalí J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci. 2014 Apr 25;15(5):7064-123.  PubMed, PubMedCentral, CrossRef
  11. Sarkar D, Yang JC, Gupta AS, Lopina ST.  Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications. J Biomed Mater Res A. 2009 Jul;90(1):263-71. PubMed, CrossRef
  12. Varvarenko SM, Nosova NG, Dron IA, Voronov AS, Fihurka NV, Tarnavchyk IT, Taras RS, Vostres VB, Samaryk VY, Voronov SA. Novel amino-functional amphiphilic polyesters and dispersed systems based on them. Issues Chemistry Chem Technol. 2013;5:27-32. (In Ukrainian).
  13. Varvarenko SM, Samaryk V. Y., Vlizlo VV, Ostapiv DD, Nosova NG, Tarnavchyk IT, Fihurka NV, Ferens MV, Nagornyak MI, Taras RS, Yaremchuk IM, Voronov AS, Voronov SA. Fluorescein-containing theranostics based on the pseudo-poly(amino acid)s for monitoring of drug delivery and release. Polymer J. 2015;37(2):193-199. (In Ukrainian).
  14. Vlizlo V. V., Fedoruk R. S., Ratych I. B. Laboratory methods of research in biology, stockbreeding and veterinary medicine. Lviv: SPOLOM, 2012. 764 p. (In Ukrainian).
  15. Portilla-Arias JA, Camargo B, García-Alvarez M, de Ilarduya AM, Muñoz-Guerra S. Nanoparticles made of microbial poly(gamma-glutamate)s for encapsulation and delivery of drugs and proteins. J Biomater Sci Polym Ed. 2009;20(7-8):1065-79. PubMed, CrossRef
  16. Yang JM, Tsai RZ, Hsu CC. Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films. Colloids Surf B Biointerfaces. 2016 Jun 1;142:98-104.
    PubMedCrossRef
  17. Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. J Polym Sci B Polym Phys. 2011 Jun 15;49(12):832-864. PubMed, PubMedCentral, CrossRef
  18. Santra S, Perez JM. Selective N-alkylation of β-alanine facilitates the synthesis of a poly(amino acid)-based theranostic nanoagent. Biomacromolecules. 2011 Nov 14;12(11):3917-27. PubMed, PubMedCentral, CrossRef
  19. Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T, Takahashi M, Yamanishi K, Mori Y.  Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine. 2009 Sep 25;27(42):5896-905. PubMed, CrossRef
  20. Varvarenko S, Tarnavchyk I, Voronov A, Fihurka N, Dron I, NNosova N, Taras R, Samaryk V, Vorono S. Synthesis and colloidal properties of polyesters based on glutamic acids and glycols of different nature. Chem Chem Technol. 2013;7(2):164-168.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.