Ukr.Biochem.J. 2017; Volume 89, Issue 5, Sep-Oct, pp. 21-31

doi: https://doi.org/10.15407/ubj89.05.021

Ca(2+)-dependent regulation of fibrinolytic system activation on fibrin(ogen) D-domains

T. A. Yatsenko, V. M. Rybachuk, S. M. Kharchenko, T. V. Grinenko

Palladin Instiute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: tetyanaa.yatsenko@gmail.com

In the present study, we investigated whether calcium content modulation in D-domains of fibrin(ogen) was involved in fibrinolytic process activation. To investigate the effect of Ca2+-dependent changes in D-domains two types of fibrinogen fragments D and cross-linked fibrin fragments DD were obtained from plasmin hydrolysate of human fibrin(ogen): chelator-treated and without chelating agents. The study of plasminogen activation by tissue-type plasminogen activator on D- and DD-fragments had shown the intensification of plasmin formation in case of EDTA pretreatment of fragments. The proenzyme activation rate on DD also increased in the presence of EGTA in concentration-dependent manner. Potentiating effect of EGTA-pretreated DD-fragment on plasminogen activation by tPA was decreased in the presence of Ca2+. Activation rate reduction was observed according to the increase of CaCl2 concentration in the reaction medium. The intensification of plasminogen activation potentiation by chelator-treated fibrin(ogen) D-domain containing fragments and subsequent potentiation decrease in the presence of Ca2+ indicated the requirement of Ca2+-dependent changes in D-domains for plasminogen activation sites exposure and initiation of fibrinolysis.

Keywords: , , , , ,


References:

  1. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247-99. PubMed, CrossRef
  2. Weisel JW, Litvinov RI. Fibrin formation, structure and properties. In Fibrous Proteins: Structures and Mechanisms, Subcellular Biochemistry 82 / D. A. D. Parry, J. M. Squire. Springer, 2017. P. 405–456.  CrossRef
  3. Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci. 2001;936:237-46. PubMed, CrossRef
  4. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Fourth Edition. / R.W. Colman, J. Hirsh, V. J. Marder, A.W. Clowes, J. N. George. Lippincott Williams & Wilkins, 2001. 1578 p.
  5. Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013 Mar 7;121(10):1712-9. PubMed, PubMedCentral, CrossRef
  6. Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997 Oct 2;389(6650):455-62. PubMed, CrossRef
  7. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005 Aug;3(8):1894-904. PubMed, CrossRef
  8. Hudson NE. Biophysical Mechanisms Mediating Fibrin Fiber Lysis. Biomed Res Int. 2017;2017:2748340.  PubMed, PubMedCentral, CrossRef
  9. Pechik I, Yakovlev S, Mosesson MW, Gilliland GL, Medved L. Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry. 2006 Mar 21;45(11):3588-97. PubMed, PubMedCentral, CrossRef
  10. Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095-6. PubMed, CrossRef
  11. Varetskaya TV. Microgeterogenety of fibrinogen. Cryofibrinogen. Ukr Biokhim Zhurn. 1960; 32(1): 13-24.
  12. Pozdnjakova TM, Musjalkovskaja AA, Ugarova TP, Protvin DD, Kotsjuruba VN. On the properties of fibrin monomer prepared from fibrin clot with acetic acid. Thromb Res. 1979;16(1-2):283-8. PubMed, CrossRef
  13. Olexa SA, Budzynski AZ. Primary soluble plasmic degradation product of human cross-linked fibrin. Іsolation and stoichiometry of the (DD)E complex. Вiochemistry. 1979; 18(6): 991-5. CrossRef
  14. Váradi A, Patthy L. Location of plasminogen-binding sites in human fibrin(ogen). Biochemistry. 1983 May 10;22(10):2440-6. PubMed, CrossRef
  15. Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry. 2000 Dec 26;39(51):15730-41. PubMed, CrossRef
  16. Hasan AA, Chang WS, Budzynski AZ. Binding of fibrin fragments to one-chain and two-chain tissue-type plasminogen activator. Blood. 1992 May 1;79(9):2313-21. PubMed
  17. Nieuwenhuizen W, Vermond A, Hermans J. Human fibrinogen binds EDTA and citrate. Thromb Res. 1981 Jun 1-25;22(5-6):659-63. PubMed, CrossRef
  18. Tsurupa G, Ho-Tin-Noé B, Anglés-Cano E, Medved L. Identification and characterization of novel lysine-independent apolipoprotein(a)-binding sites in fibrin(ogen) alphaC-domains. J Biol Chem. 2003 Sep 26;278(39):37154-9. PubMed, CrossRef
  19. Everse SJ, Spraggon G, Veerapandian L, Riley M, Doolittle RF. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry. 1998 Jun 16;37(24):8637-42. PubMed, CrossRef
  20. Doolittle RF, Yang Z, Mochalkin I. Crystal structure studies on fibrinogen and fibrin. Ann N Y Acad Sci. 2001;936(1):31-43. PubMed, CrossRef
  21. Averett LE, Akhremitchev BB, Schoenfisch MH, Gorkun OV. Calcium dependence of fibrin nanomechanics: the γ1 calcium mediates the unfolding of fibrinogen induced by force applied to the “A-a” bond. Langmuir. 2010 Sep 21;26(18):14716-22.  PubMed, CrossRef
  22. Kostelansky MS, Betts L, Gorkun OV, Lord ST. 2.8 A crystal structures of recombinant fibrinogen fragment D with and without two peptide ligands: GHRP binding to the “b” site disrupts its nearby calcium-binding site. Biochemistry. 2002 Oct 8;41(40):12124-32. PubMed, CrossRef
  23. Kostelansky MS, Lounes KC, Ping LF, Dickerson SK, Gorkun OV, Lord ST. Calcium-binding site beta 2, adjacent to the “b” polymerization site, modulates lateral aggregation of protofibrils during fibrin polymerization. Biochemistry. 2004 Mar 9;43(9):2475-83. PubMed, CrossRef
  24. Everse SJ, Spraggon G, Veerapandian L, Doolittle RF. Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide. Biochemistry. 1999 Mar 9;38(10):2941-6. PubMed, CrossRef
  25. Yatsenko T. A., Rybachuk V.N., Yusova O. I., Kharchenko S. M., Grinenko T. V. Effect of fibrin degradation products on fibrinolytic process. Ukr Biochem J. 2016; 88(2): 16-24.  CrossRef
  26. Nieuwenhuizen W, Schielen WJ, Yonekawa O, Tesser GI, Voskuilen M. Studies on the localization and accessibility of sites in fibrin which are involved in the acceleration of the activation of plasminogen by tissue-type plasminogen activator. Adv Exp Med Biol. 1990;281:83-91. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.