Ukr.Biochem.J. 2017; Volume 89, Issue 5, Sep-Oct, pp. 32-39

doi: https://doi.org/10.15407/ubj89.05.032

Search of protein kinase CK2 inhibitors based on purine-2,6-diones derivatives

M. V. Protopopov1, O. V. Ostrynska2, D. H. Ivanchenko3, S. A. Starosyla2,
V. G. Bdzhola2, M. I. Romanenko3, S. M. Yarmoluk2

1Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: mykola.protopopov@gmail.com;
2Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv;
e-mail: sergiy@yarmoluk.org.ua;
3Zaporozhye State Medical University, Ukraine;
e-mail: ivanchenko230181@gmail.com

This work is aimed to the search of protein kinase CK2 inhibitors among the purine-2,6-dione derivatives by molecular docking and biochemical tests. It was found that the most active compound 8-[2-[(3-methoxyphenyl)methylidene]hydrazine-1-yl]-3-methyl-7-(3-phenoxypropyl)-2,3,6,7-tetrahydro-1H-purine-2,6-dione inhibited protein kinase CK2 with IC50 value of 8.5 µM in vitro in kinase assay. Biochemical tests and computer simulation results allowed determining the binding mode of the most active compound and structure-activity relationships.

Keywords: , , , ,


References:

  1. Cohen P. Protein kinases – the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002 Apr;1(4):309-15. PubMed, CrossRef
  2. Yarmoluk SM, Nyporko AYu, Bdzhola VG. Rational design of protein kinase inhibitors. Biopolym Cell. 2013; 29(4): 339-347.   CrossRef
  3. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J. 2003 Jan 1;369(Pt 1):1-15. PubMed, PubMedCentralCrossRef
  4. Vilk G, Weber JE, Turowec JP, Duncan JS, Wu C, Derksen DR, Zien P, Sarno S, Donella-Deana A, Lajoie G, Pinna LA, Li SS, Litchfield DW. Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells. Cell Signal. 2008 Nov;20(11):1942-51. PubMed, CrossRef
  5. Wirkner U, Voss H, Lichter P, Ansorge W, Pyerin W. The human gene (CSNK2A1) coding for the casein kinase II subunit alpha is located on chromosome 20 and contains tandemly arranged Alu repeats. Genomics. 1994 Jan 15;19(2):257-65. PubMed, CrossRef
  6. Yang-Feng TL, Naiman T, Kopatz I, Eli D, Dafni N, Canaani D. Assignment of the Human Casein Kinase II α′ Subunit Gene (CSNK2A1) to Chromosome 16p13.2-p13.3. Genomics. 1994; 19(1): 173.  CrossRef
  7. Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors. 2010 May-Jun;36(3):187-95.  PubMed, PubMedCentralCrossRef
  8. McElhinny JA, Trushin SA, Bren GD, Chester N, Paya CV. Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol. 1996 Mar;16(3):899-906. PubMed, PubMedCentral, CrossRef
  9. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD. Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem. 1997 Dec 19;272(51):32606-12. PubMed, CrossRef
  10. 10. Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel). 2017 Jan 28;10(1). pii: E18.  PubMed, PubMedCentral, CrossRef
  11. 11. Gowda C, Song C, Kapadia M, Payne JL, Hu T, Ding Y, Dovat S. Regulation of cellular proliferation in acute lymphoblastic leukemia by Casein Kinase II (CK2) and Ikaros. Adv Biol Regul. 2017 Jan;63:71-80. PubMed, CrossRef
  12. 12. Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev. 2011 Nov;31(6):924-54. PubMed, CrossRef
  13. Rosenberger AF, Morrema TH, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, Rozemuller AJ, Scheltens P, van der Vies SM, Hoozemans JJ. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J Neuroinflammation. 2016 Jan 6;13:4.  PubMed, PubMedCentral, CrossRef
  14. Rebholz H, Zhou M, Nairn AC, Greengard P, Flajolet M. Selective knockout of the casein kinase 2 in d1 medium spiny neurons controls dopaminergic function. Biol Psychiatry. 2013 Jul 15;74(2):113-21. PubMed, PubMedCentral, CrossRef
  15. Ryu MY, Kim DW, Arima K, Mouradian MM, Kim SU, Lee G. Localization of CKII beta subunits in Lewy bodies of Parkinson’s disease. J Neurol Sci. 2008 Mar 15;266(1-2):9-12. PubMed, CrossRef
  16. Aksenova MV, Burbaeva GS, Kandror KV, Kapkov DV, Stepanov AS. The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer’s disease patients. FEBS Lett. 1991 Feb 11;279(1):55-7. PubMed, CrossRef
  17. Ljubimov AV, Caballero S, Aoki AM, Pinna LA, Grant MB, Castellon R. Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4583-91. PubMed, PubMedCentral, CrossRef
  18. Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 2003 Mar;17(3):349-68. PubMed, CrossRef
  19. DrugBank database. Access mode: https://www.drugbank.ca/
  20. Luo C, Xie P, Marmorstein R. Identification of BRAF inhibitors through in silico screening. J Med Chem. 2008 Oct 9;51(19):6121-6127. PubMed, PubMedCentral, CrossRef
  21. Jadhav GP, Kaur I, Maryati M, Airhihen B, Fischer PM, Winkler GS. Discovery, synthesis and biochemical profiling of purine-2,6-dione derivatives as inhibitors of the human poly(A)-selective ribonuclease Caf1. Bioorg Med Chem Lett. 2015 Oct 1;25(19):4219-24. PubMed, PubMedCentral, CrossRef
  22. Chloń G, Pawłowski M, Duszyńska B, Szaro A, Tatarczńska E, Kłodzińska AL, Chojnacka-Wójcik E. Synthesis, 5-HT1A and 5-HT2A receptor activity of new 1-phenylpiperazinylpropyl derivatives with arylalkyl substituents in position 7 of purine-2,6-dione. Pol J Pharmacol. 2001 Jul-Aug;53(4):359-68. PubMed
  23. Pat. 20120828, US8252797, Heterocyclic compounds as adenosine receptor antagonist / Palle V., Basu S., Waman Y., Ramdas V., Barawkar D., Patel M., Panmand A. Publ. 28.08.2012.
  24. Pat. 20080226, US7335655, 8-Heteroaryl xanthine adenosine A2B receptor antagonists / Baraldi P., Pier P. Publ. 26.02.2008.
  25. Pat. 20100715, US2010179128, Xanthine derivatives as selective hm74a agonists / Hatley R., Heer J., Liddle J., Mcmurtrie M., Pinto I., Rahman S., Smith I. Publ. 15.07.2010.
  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785-91.  PubMed, PubMedCentral, CrossRef
  27. Pedretti A, Villa L, Vistoli G. VEGA – an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des. 2004 Mar;18(3):167-73. PubMed, CrossRef
  28. Ferguson AD, Sheth PR, Basso AD, Paliwal S, Gray K, Fischmann TO, Le HV. Structural basis of CX-4945 binding to human protein kinase CK2. FEBS Lett. 2011 Jan 3;585(1):104-10.  PubMed, CrossRef
  29. Syniugin AR, Ostrynska OV, Chekanov MO, Volynets GP, Starosyla SA, Bdzhola VG, Yarmoluk SM. Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2. J Enzyme Inhib Med Chem. 2016;31(sup4):160-169. PubMed, CrossRef
  30. Discovery Studio Visualizer. Access mode: http://accelrys.com/
  31. Hastie CJ, McLauchlan HJ, Cohen P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc. 2006;1(2):968-71. PubMed, CrossRef
  32. Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, Marvin 17.11.0, 2017, ChemAxon (http://www.chemaxon.com).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.