Ukr.Biochem.J. 2017; Volume 89, Issue 6, Nov-Dec, pp. 39-47


Time-dependent effect of severe hypoxia/reoxygenation on oxidative stress level, antioxidant capacity and p53 accumulation in mitochondria of rat heart

O. A. Gonchar, I. N. Mankovska

Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv;

The intensity of oxidative stress, protein expression of antiapoptotic Bcl-2 as well as antioxidant enzymes manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPx) and their regulator p53 were studied in the mitochondria of rat heart. Sessions of repeated hypoxia/reoxygenation ((H/R), 5 cycles of 10 min hypoxia (5.5% O2 in N2) alternated with 10 min normoxia, daily) were performed in our study. It was shown that short-term sessions of H/R (during 1-3 days) caused a significant increase in the oxidative stress markers (ROS formation and lipid peroxidation), mitochondrial p53 translocation, a decrease in MnSOD­ protein expression/activity and Bcl-2 protein content, but up-regulated GPx. We have demonstrated that prolonged H/R (7-14 days) induced myocardial tolerance to fluctuation in oxygen levels that was associa­ted with the reduction in mitochondrial p53 protein content, elevation of mitochondrial Bcl-2 protein level, and increase in antioxidant capacity. A close correlation between the mitochondrial p53 accumulation and ROS formation as well as the activity and protein content of MnSOD and GPx allowed us to assume that p53 took an active part in the regulation of prooxidant/antioxidant balance in mitochondria of rat heart during repeated H/R.

Keywords: , , , , ,


  1. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002 Feb;282(2):C227-41. PubMed, CrossRef
  2. Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009 Apr 15;77(8):1303-15.  PubMed, CrossRef
  3. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-3. PubMed, PubMedCentral, CrossRef
  4. Limón-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res. 2009 Mar 31;674(1-2):137-47.  PubMed, CrossRef
  5. Gonchar O, Mankovska I. Antioxidant system in adaptation to intermittent hypoxia. J Biol Sci. 2010; 10(6): 545–554.  CrossRef
  6. Pardo M, Tirosh O. Protective signalling effect of manganese superoxide dismutase in hypoxia-reoxygenation of hepatocytes. Free Radic Res. 2009 Dec;43(12):1225-39.  PubMed, CrossRef
  7. Arrigo AP. Gene expression and the thiol redox state. Free Radic Biol Med. 1999 Nov;27(9-10):936-44. PubMed, CrossRef
  8. Gonchar O. Effect of intermittent hypoxia different regimes on mitochondrial lipid peroxidation and glutathione-redox balance in stressed rats. Cent Europ J Biol. 2008; 3(3): 233-242.  CrossRef
  9. Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 2004 Apr 1;64(7):2350-6. PubMed, CrossRef
  10. Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther. 2010 Mar;125(3):376-93. PubMed, CrossRef
  11. Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership. Free Radic Biol Med. 2008 Apr 15;44(8):1529-35. PubMed, PubMedCentral, CrossRef
  12. Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2014; 1(1): 18–26.  CrossRef
  13. Borrás C, Gómez-Cabrera MC, Viña J. The dual role of p53: DNA protection and antioxidant. Free Radic Res. 2011 Jun;45(6):643-52.  PubMed, CrossRef
  14. Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999 Apr 23;274(17):12061-6. PubMed, CrossRef
  15. Drane P, Bravard A, Bouvard V, May E. Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene. 2001 Jan 25;20(4):430-9. PubMed, CrossRef
  16. Pani G, Bedogni B, Anzevino R, Colavitti R, Palazzotti B, Borrello S, Galeotti T. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res. 2000 Aug 15;60(16):4654-60. PubMed
  17. Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005 May 1;65(9):3745-50. PubMed, CrossRef
  18. Lebedeva MA, Eaton JS, Shadel GS. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim Biophys Acta. 2009 May;1787(5):328-34. PubMed, PubMedCentral, CrossRef
  19. Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M, Giaccia A. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 2001 Feb;21(4):1297-310. PubMed, PubMedCentral, CrossRef
  20. Gonchar O, Mankovska I. Hypoxia/reoxygenation modulates oxidative stress level and antioxidative potential in lung mitochondria: possible participation of p53 and NF-kB target proteins. Arch Pulmonol Respir Care. 2017; 3(2): 35–43.
  21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  22. Young TA, Cunningham CC, Bailey SM. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys. 2002 Sep 1;405(1):65-72. PubMed, CrossRef
  23. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10. PubMed, CrossRef
  24. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114-21. PubMed, CrossRef
  25. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972 May 25;247(10):3170-5. PubMed
  26. Iqbal J, Whitney P. Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic Biol Med. 1991;10(1):69-77. PubMed, CrossRef
  27. Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 2010 Jan;20(1):14-24.  PubMed, CrossRef
  28. Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM, Zhou ZN. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res. 2003 Oct;13(5):385-91. PubMed, CrossRef
  29. Suzuki H, Tomida A, Tsuruo T. Dephosphorylation hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 2001; 20(41): 5779–7588.  CrossRef
  30. Quintero M, Gonzalez-Martin Mdel C, Vega-Agapito V, Gonzalez C, Obeso A, Farré R, Agapito T, Yubero S. The effects of intermittent hypoxia on redox status, NF-κB activation, and plasma lipid levels are dependent on the lowest oxygen saturation. Free Radic Biol Med. 2013 Dec;65:1143-54.  PubMed, CrossRef
  31. Yamakura F, Kawasaki H. Post-translational modifications of superoxide dismutase. Biochim Biophys Acta. 2010 Feb;1804(2):318-25. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.