Ukr.Biochem.J. 2018; Volume 90, Issue 1, Jan-Feb, pp. 3-24


The biosynthesis of nitric oxide from L-arginine. Nitric oxide formation features and its functional role in mitochondria

G. V. Danylovych, T. V. Bohach, Yu. V. Danylovych

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

Modern data on biochemical patterns of nitric oxide biosynthesis in mammal cells from L-arginine in normoxic conditions is described.  The attention of the authors is given to the results of the recent years on the structure and regulation features isoforms of NO-synthase. The emphasis is put on the latest conception of the compartmentalization of certain isoforms of these enzymes in cells and on the possibility of the directed transport of nitric oxide in the vascular wall. The central place in the review is devoted to issues on the endogenous formation of NO in mitochondria and its potential physiological significance. Our own results on the identification of NO in mitochondria of the uterine smooth muscle, biochemical characteristics of this process and NO possible role in Са2+ transport regulation by organelles are presented and discussed.

Keywords: , , , , ,


  1. Sybirna NO, Lyuta M Ya, Klymyshyn NI. Mоlecular mechanisms of nitric oxide deposition in erythrocytes. Studia Biologica.  2010; 4(1): 143–160. (Іn Ukrainian).
  2. Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep. 2015 Mar;11(3):1555-65.  PubMed, PubMedCentral, CrossRef
  3. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001 Aug 1;357(Pt 3):593-615. PubMed, PubMed, CrossRef
  4. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012 Apr;33(7):829-37.  PubMed, PubMedCentral, CrossRef
  5. Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122(1):55-68.  PubMed, CrossRef
  6. Haynes V, Elfering SL, Squires RJ, Traaseth N, Solien J, Ettl A, Giulivi C. Mitochondrial nitric-oxide synthase: role in pathophysiology. IUBMB Life. 2003 Oct-Nov;55(10-11):599-603. PubMed, CrossRef
  7. Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1283-93. PubMed, CrossRef
  8. 8. Buxton IL. Regulation of uterine function: a biochemical conundrum in the regulation of smooth muscle relaxation. Mol Pharmacol. 2004 May;65(5):1051-9. PubMed, CrossRef
  9. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance. Cardiovasc Res. 2006 Jul 1;71(1):10-21. PubMed, CrossRef
  10. Durán WN, Breslin JW, Sánchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res. 2010 Jul 15;87(2):254-61. PubMed, PubMedCentral, CrossRef
  11. Kleschyov AL. The NO-heme signaling hypothesis. Free Radic Biol Med. 2017 Nov;112:544-552.  PubMed, CrossRef
  12. Leite AC, Oliveira HC, Utino FL, Garcia R, Alberici LC, Fernandes MP, Castilho RF, Vercesi AE. Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1210-6. PubMed, CrossRef
  13. Ghimire K, Altmann HM, Straub AC, Isenberg JS. Nitric oxide: what’s new to NO? Am J Physiol Cell Physiol. 2017 Mar 1;312(3):C254-C262.  PubMed, PubMedCentral, CrossRef
  14. Corbin JD. Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int J Impot Res. 2004 Jun;16(Suppl 1):S4-7. PubMed, CrossRef
  15. Mutchler SM, Straub AC. Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide. 2015 Sep 15;49:8-15.  PubMed, PubMedCentral, CrossRef
  16. Kovalyov IV, Baskakov MB, Kapilevich LV, Medvedev MA. Role of nitric oxide in the regulation of electrical and contractive activity of unstriped muscles. Bulletin Sibir Medicine.  2004; 1:7-26. (Іn Russian).
  17. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 2015 Oct;129(2):83-94. PubMed, CrossRef
  18. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol. 2015 Feb 17;6:20.  PubMed, PubMed, CrossRef
  19. Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, López LM, Romorini L, Poderoso JJ, Carreras MC. Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem. 2006 Feb 24;281(8):4779-86. PubMed, CrossRef
  20. Nosarev AV, Smagliy LV, Anfinogenova Y, Popov SV, Kapilevich LV. Exercise and NO production: relevance and implications in the cardiopulmonary system. Front Cell Dev Biol. 2015 Jan 7;2:73. PubMed, PubMedCentral, CrossRef
  21. Giulivi C. Mitochondria as generators and targets of nitric oxide. Novartis Found Symp. 2007;287:92-104. PubMed, CrossRef
  22. Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide, in: M. Reivich, R. Coburn, S. Lahiri, B. Chance (Eds.), Tissue hypoxia and ischemia. Plenun Publishing corporation, NewYork, 1977, pp. 67–82. CrossRef
  23. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997 Oct 13;416(1):15-8. PubMed, CrossRef
  24. Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med. 2012 Dec 1;53(11):2043-53. PubMed, PubMedCentral, CrossRef
  25. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007 Jul 15;75(2):283-90. PubMed, CrossRef
  26. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology. Am J Physiol Cell Physiol. 2006 Dec;291(6):C1225-31.  PubMed, CrossRef
  27. Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, Vielhaber S, Seppet E, Striggow F. The regulation of OXPHOS by extramitochondrial calcium. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1018-27. PubMed, CrossRef
  28. Traaseth N, Elfering S, Solien J, Haynes V, Giulivi C. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochim Biophys Acta. 2004 Jul 23;1658(1-2):64-71. PubMed, CrossRef
  29. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. J Cell Sci. 2006 Jul 15;119(Pt 14):2855-62. PubMed, CrossRef
  30. Tengan CH, Rodrigues GS, Godinho RO. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci. 2012 Dec 14;13(12):17160-84. PubMed, PubMedCentral, CrossRef
  31. Salem MM, Shalbaf M, Gibbons NC, Chavan B, Thornton JM, Schallreuter KU. Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB J. 2009 Nov;23(11):3790-807.  PubMed, CrossRef
  32. Demicheli V, Moreno DM, Jara GE, Lima A, Carballal S, Ríos N, Batthyany C, Ferrer-Sueta G, Quijano C, Estrı́n DA, Martí MA, Radi R. Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34. Biochemistry. 2016 Jun 21;55(24):3403-17. PubMed, CrossRef
  33. Tórtora V, Quijano C, Freeman B, Radi R, Castro L. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radic Biol Med. 2007 Apr 1;42(7):1075-88. PubMed, CrossRef
  34. Gong L, Liu FQ, Wang J, Wang XP, Hou XG, Sun Y, Qin WD, Wei SJ, Zhang Y, Chen L, Zhang MX. Hyperglycemia induces apoptosis of pancreatic islet endothelial cells via reactive nitrogen species-mediated Jun N-terminal kinase activation. Biochim Biophys Acta. 2011 Jun;1813(6):1211-9. PubMed, CrossRef
  35. Santos C, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med. 2011 Apr 1;50(7):777-93. PubMed, PubMedCentral, CrossRef
  36. Brown GC. Nitric oxide and neuronal death. Nitric Oxide. 2010 Nov 1;23(3):153-65. PubMed, CrossRef
  37. Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem. 2002 Mar-Apr;383(3-4):401-9. PubMed, CrossRef
  38. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999 Aug 15;43(3):521-31. PubMed, CrossRef
  39. Kone BC, Kuncewicz T, Zhang W, Yu ZY. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Renal Physiol. 2003 Aug;285(2):F178-90. PubMed, CrossRef
  40. Daff S. NO synthase: structures and mechanisms. Nitric Oxide. 2010 Aug 1;23(1):1-11.  PubMed, CrossRef
  41. Daff S, Sagami I, Shimizu T. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer. J Biol Chem. 1999 Oct 22;274(43):30589-95. PubMed, CrossRef
  42. Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem. 2002 Oct 11;277(41):38079-86. PubMed, CrossRef
  43. Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994 Jun;23(6 Pt 2):1121-31. PubMed, CrossRef
  44. Ogura T, Yokoyama T, Fujisawa H, Kurashima Y, Esumi H. Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1014-22. PubMed, CrossRef
  45. Silvagno F, Xia H, Bredt DS. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem. 1996 May 10;271(19):11204-8. PubMed, CrossRef
  46. Brenman JE, Xia H, Chao DS, Black SM, Bredt DS. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev Neurosci. 1997;19(3):224-31. PubMed, CrossRef
  47. De Palma C, Morisi F, Pambianco S, Assi E, Touvier T, Russo S, Perrotta C, Romanello V, Carnio S, Cappello V, Pellegrino P, Moscheni C, Bassi MT, Sandri M, Cervia D, Clementi E. Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skelet Muscle. 2014 Dec 12;4(1):22. PubMed, PubMedCentral, CrossRef
  48. Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem. 1999 Sep 24;274(39):27467-73. PubMed, CrossRef
  49. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 1996 Mar 8;84(5):757-67. PubMed, CrossRef
  50. Rodríguez-Crespo I, Straub W, Gavilanes F, Ortiz de Montellano PR. Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Arch Biochem Biophys. 1998 Nov 15;359(2):297-304. PubMed, CrossRef
  51. Hemmens B, Woschitz S, Pitters E, Klösch B, Völker C, Schmidt K, Mayer B. The protein inhibitor of neuronal nitric oxide synthase (PIN): characterization of its action on pure nitric oxide synthases. FEBS Lett. 1998 Jul 3;430(3):397-400. PubMed, CrossRef
  52. King SM, Barbarese E, Dillman JF 3rd, Patel-King RS, Carson JH, Pfister KK. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem. 1996 Aug 9;271(32):19358-66. PubMed, CrossRef
  53. Heinonen I, Saltin B, Hellsten Y, Kalliokoski KK. The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. Eur J Appl Physiol. 2017 Jun;117(6):1175-1180. PubMedPubMed
  54. Li Q, Chen Y, Zhang X, Zuo S, Ge H, Chen Y, Liu X, Zhang JH, Ruan H, Feng H. Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. J Clin Neurosci. 2016 Dec;34:264-270.  PubMed, CrossRef
  55. Tsai TN, Lin WS, Wu CH, Lin WY, Chu KM, Cheng CC, Hsu CH, Tsai WC, Cheng SM, Yang SP. Activation of Krüppel-Like Factor 2 with Ginkgo Biloba Extract Induces eNOS Expression and Increases NO Production in Cultured Human Umbilical Endothelial Cells. Acta Cardiol Sin. 2014 May;30(3):215-22. PubMed, PubMedCentral
  56. Varejckova M, Gallardo-Vara E, Vicen M, Vitverova B, Fikrova P, Dolezelova E, Rathouska J, Prasnicka A, Blazickova K, Micuda S, Bernabeu C, Nemeckova I, Nachtigal P. Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sci. 2017 Apr 15;175:52-60. PubMed, CrossRef
  57. Lee JE, Yuan H, Liang FX, Sehgal PB. Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cells. Nitric Oxide. 2013 Sep 1;33:64-73. PubMed, PubMedCentral, CrossRef
  58. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem. 1996 Sep 13;271(37):22810-4. PubMed, CrossRef
  59. Carreras MC, Poderoso JJ. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol. 2007 May;292(5):C1569-80. PubMed, CrossRef
  60. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996 Mar 15;271(11):6518-22. PubMed, CrossRef
  61. Michel T. Targeting and translocation of endothelial nitric oxide synthase. Braz J Med Biol Res. 1999 Nov;32(11):1361-6. PubMed, CrossRef
  62. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999 Jun 10;399(6736):601-5. PubMed, CrossRef
  63. Komeima K, Hayashi Y, Naito Y, Watanabe Y. Inhibition of neuronal nitric-oxide synthase by calcium/ calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108-15 neuronal cells. J Biol Chem. 2000 Sep 8;275(36):28139-43. PubMed, CrossRef
  64. Shashar M, Chernichovski T, Pasvolsky O, Levi S, Grupper A, Hershkovitz R, Weinstein T, Schwartz IF. Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway. Kidney Blood Press Res. 2017;42(2):201-208. PubMed, CrossRef
  65. Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998 Nov 15;336(Pt 1):1-17. PubMed, PubMedCentral, CrossRef
  66. Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, Bauer PM, Schnermann J, Roberts DD, Isenberg JS. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res. 2010 Dec 1;88(3):471-81. PubMed, PubMedCentral, CrossRef
  67. Rogers NM, Sharifi-Sanjani M, Csányi G, Pagano PJ, Isenberg JS. Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biol. 2014 Jul;37:92-101.  PubMed, PubMedCentral, CrossRef
  68. Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol. 2009 Feb 15;587(Pt 4):851-72. PubMed, PubMedCentral, CrossRef
  69. Sanchez-Padilla J, Guzman JN, Ilijic E, Kondapalli J, Galtieri DJ, Yang B, Schieber S, Oertel W, Wokosin D, Schumacker PT, Surmeier DJ. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci. 2014 Jun;17(6):832-40. PubMed, PubMedCentral, CrossRef
  70. Connelly L, Jacobs AT, Palacios-Callender M, Moncada S, Hobbs AJ. Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. J Biol Chem. 2003 Jul 18;278(29):26480-7. PubMed, CrossRef
  71. van Straaten JF, Postma DS, Coers W, Noordhoek JA, Kauffman HF, Timens W. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase. Mod Pathol. 1998 Jul;11(7):648-55. PubMed
  72. Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin α in the blood vessel wall. Free Radic Biol Med. 2014 Aug;73:136-42. PubMed, PubMedCentral, CrossRef
  73. Lin X, Xu Q, Veenstra RD. Functional formation of heterotypic gap junction channels by connexins-40 and -43. Channels (Austin). 2014;8(5):433-43. PubMed, PubMedCentral, CrossRef
  74. Pogoda K, Füller M, Pohl U, Kameritsch P. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun Signal. 2014 May 15;12:33. PubMed, PubMedCentral, CrossRef
  75. Nishida CR, Ortiz de Montellano PR. Autoinhibition of endothelial nitric-oxide synthase. Identification of an electron transfer control element. J Biol Chem. 1999 May 21;274(21):14692-8. PubMed, CrossRef
  76. Chreifi G, Li H, McInnes CR, Gibson CL, Suckling CJ, Poulos TL. Communication between the zinc and tetrahydrobiopterin binding sites in nitric oxide synthase. Biochemistry. 2014 Jul 1;53(25):4216-23. PubMed, PubMedCentral, CrossRef
  77. Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond). 2007 Jul;113(2):47-63. PubMed, CrossRef
  78. Li H, Poulos TL.Structure-function studies on nitric oxide synthases. J Inorg Biochem. 2005 Jan;99(1):293-305. PubMed, CrossRef
  79. Sheng JZ, Wang D, Braun AP. DAF-FM (4-amino-5-methylamino-2′,7′-difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin C and L-sepiapterin. J Pharmacol Exp Ther. 2005 Nov;315(2):931-40. PubMed, CrossRef
  80. Chuaiphichai S, McNeill E, Douglas G, Crabtree MJ, Bendall JK, Hale AB, Alp NJ, Channon KM. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation. Hypertension. 2014 Sep;64(3):530-40.  PubMed, PubMedCentral,  CrossRef
  81. Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem. 2009 Jan 9;284(2):1136-44. PubMed, CrossRef
  82. Talib J, Kwan J, Suryo Rahmanto A, Witting PK, Davies MJ. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochem J. 2014 Jan 1;457(1):89-97.  PubMed, CrossRef
  83. Simon A, Plies L, Habermeier A, Martiné U, Reining M, Closs EI. Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ Res. 2003 Oct 31;93(9):813-20. PubMed, CrossRef
  84. Santhanam L, Christianson DW, Nyhan D, Berkowitz DE. Arginase and vascular aging. J Appl Physiol. 2008 Nov;105(5):1632-42.  PubMed, PubMedCentral, CrossRef
  85. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007 Sep;34(9):906-11.  PubMed, PubMedCentral, CrossRef
  86. Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol. 2009 Jul;157(6):922-30. PubMed, PubMedCentral, CrossRef
  87. Elms S, Chen F, Wang Y, Qian J, Askari B, Yu Y, Pandey D, Iddings J, Caldwell RB, Fulton DJ. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. Am J Physiol Heart Circ Physiol. 2013 Sep 1;305(5):H651-66.  PubMed, PubMedCentral, CrossRef
  88. Ferents IV, Brodyak IV, Lyuta MYa, Burda VA, Fedorovych AM, Sybirna NO. The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats. Ukr Biokhim Zhurn. 2012 May-Jun;84(3):55-62. (In Ukrainian). PubMed
  89. Closs EI, Scheld JS, Sharafi M, Förstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol. 2000 Jan;57(1):68-74. PubMed
  90. Pollock JS, Förstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA. 1991 Dec 1;88(23):10480-4. PubMed, PubMedCentral, CrossRef
  91. Ash DE. Structure and function of arginases. J Nutr. 2004 Oct;134(10 Suppl):2760S-2767S. PubMed, CrossRef
  92. Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem. 2014 May 9;289(19):13374-84.  PubMed, PubMedCentral, CrossRef
  93. Boucher JL, Moali C, Tenu JP. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci. 1999 Jul;55(8-9):1015-28. PubMed, CrossRef
  94. Que LG, George SE, Gotoh T, Mori M, Huang YC. Effects of arginase isoforms on NO Production by nNOS. Nitric Oxide. 2002 Feb;6(1):1-8. PubMed, CrossRef
  95. Peng H, Chen L, Huang X, Yang T, Yu Z, Cheng G, Zhang G, Shi R. Vascular peroxidase 1 up regulation by angiotensin II attenuates nitric oxide production through increasing asymmetrical dimethylarginine in HUVECs. J Am Soc Hypertens. 2016 Sep;10(9):741-751.e3. PubMed, CrossRef
  96. Cosentino F, Sill JC, Katusić ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension. 1994 Feb;23(2):229-35. PubMed, CrossRef
  97. Gorren AC, Mayer B. The versatile and complex enzymology of nitric oxide synthase. Biochemistry (Mosc). 1998 Jul;63(7):734-43. PubMed
  98. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997 Dec 1;418(3):291-6. PubMed, CrossRef
  99. Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998 May 1;273(18):11038-43. PubMed, CrossRef
  100. Haynes V, Elfering S, Traaseth N, Giulivi C. Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomembr. 2004 Aug;36(4):341-6. PubMed, CrossRef
  101. Valdez LB, Zaobornyj T, Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta. 2006 Mar;1757(3):166-72. PubMedCrossRef
  102. Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem J. 1998 Jun 15;332(Pt 3):673-9. PubMed, PubMedCentral, CrossRef
  103. Dolińska M, Albrecht J. L-arginine uptake in rat cerebral mitochondria. Neurochem Int. 1998 Sep;33(3):233-6. PubMed, CrossRef
  104. Danylovych YuV, Karakhim SA, Kolomiets OV, Danylovych GV, Kosterin SO. Identification of nitric oxide in mitochondria of myometrium cell. Biopolym Cell. 2015; 31(3):174-178.  CrossRef
  105. Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998 May 1;273(18):11044-8. PubMed, CrossRef
  106. Boveris A, Valdez LB, Alvarez S, Zaobornyj T, Boveris AD, Navarro A. Kidney mitochondrial nitric oxide synthase. Antioxid Redox Signal. 2003 Jun;5(3):265-71. PubMed, CrossRef
  107. Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med. 2004 Nov 1;37(9):1472-8. PubMed, CrossRef
  108. Bustamante J, Bersier G, Badin RA, Cymeryng C, Parodi A, Boveris A. Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide. 2002 May;6(3):333-41. PubMed, CrossRef
  109. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005 Apr;26(4):190-5. PubMed, CrossRef
  110. Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett. 2005 Aug 26;384(3):254-9. PubMed, CrossRef
  111. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun. 2008 Feb 1;366(1):23-8. PubMed, PubMedCentral, CrossRef
  112. Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A. Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res. 2006 Oct 27;99(9):924-32. PubMed, CrossRef
  113. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409-27. PubMed
  114. Valdez LB, Zaobornyj T, Boveris A. Functional activity of mitochondrial nitric oxide synthase. Methods Enzymol. 2005;396:444-55. PubMed, CrossRef
  115. Danylovych G, Bohach T, Kolomiets O, Danylovych Yu. Biosynthesis and possible physiological role of nitric oxide in smooth muscle mitochondria. Current problems of biochemistry and cell biology: the 4th international scientific conference materials, 5-6 October 2017, Dnipro, Ukraine/ ad. Ushakova GA. Dnipro: Lira, 2017.
  116. Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem. 1992 May 5;267(13):8834-9. PubMed
  117. Brookes PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JR Jr, Darley-Usmar V. Control of mitochondrial respiration by NO*, effects of low oxygen and respiratory state. J Biol Chem. 2003 Aug 22;278(34):31603-9. PubMed, CrossRef
  118. Nagendran J, Michelakis ED. Mitochondrial NOS is upregulated in the hypoxic heart: implications for the function of the hypertrophied right ventricle. Am J Physiol Heart Circ Physiol. 2009 Jun;296(6):H1723-6. PubMed, CrossRef
  119. Poderoso JJ, Carreras MC, Schöpfer F, Lisdero CL, Riobó NA, Giulivi C, Boveris AD, Boveris A, Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med. 1999 Apr;26(7-8):925-35. PubMed, CrossRef
  120. Danylovych YuV, Danylovych HV, Kolomiets OV, Kosterin SO, Karakhim SO, Chunikhin AYu. Investigation of nitrosactive compounds influence on polarization of the mitochondrial inner membrane in the rat uterus myocytes using potential sensitive fluorescent probe DiOC6(3). Ukr Biochem J. 2014 Jan-Feb;86(1):42-55. (In Ukrainian). PubMed, CrossRef
  121. Elfering SL, Haynes VL, Traaseth NJ, Ettl A, Giulivi C. Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H22-9. PubMed, CrossRef
  122. Crouser ED.  Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004 Sep;4(5-6):729-41. PubMed, CrossRef
  123. Brown GC. Nitric oxide and mitochondria. Front Biosci. 2007 Jan 1;12:1024-33. PubMed, CrossRef
  124. Akopova OV, Sagach VF. Effect of nitric oxide donors on Ca2+-uptake in the rat heart and liver mitochondria. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):82-7. (In Russian). PubMed
  125.  Danylovych IuV, Kolomiiets’ OV, Danylovych HV, Kosterin SO. Nitric oxide as a possible regulator of energy-dependent Ca2+ transport in mitochondria of uterine smooth muscle. Fiziol Zh. 2014;60(2):12-7. (In Ukrainian). PubMed
  126. Akopova OV, Korkach IuP, Kotsiuruba AV, Kolchyns’ka LI, Sagach VF. Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo. Fiziol Zh. 2012;58(2):3-15. (In Ukrainian). PubMed
  127.  Akopova OV, Kotsiuruba AV, Kharlamova OM, Korkach IuP, Sahach VF. The role of mitochondria in NO-dependent regulation of Na+, K+-ATP activity in the rat aorta. Fiziol Zh. 2010;56(4):76-85. (In Ukrainian). PubMed
  128. Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS.  Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem. 2001 Jun 15;276(24):21482-8. PubMed, CrossRef
  129. Dedkova EN, Ji X, Lipsius SL, Blatter LA. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol. 2004 Feb;286(2):C406-15. PubMed, CrossRef
  130. Yi M, Weaver D, Hajnóczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol. 2004 Nov 22;167(4):661-72. PubMed, PubMedCentral, CrossRef
  131. Bringold U, Ghafourifar P, Richter C. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med. 2000 Aug;29(3-4):343-8. PubMed, CrossRef
  132. Ghafourifar P, Schenk U, Klein SD, Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem. 1999 Oct 29;274(44):31185-8. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.