Ukr.Biochem.J. 2018; Volume 90, Issue 4, Jul-Aug, pp. 52-63


Adenosine thiamine triphosphate and adenosine thiamine triphosphate hydrolase activity in animal tissues

A. F. Makarchikov1,2, T. V. Saroka3, T. G. Kudyrka1,2, I. K. Kolas1,2 T. A. Luchko2, I. M. Rusina1,2, V. A. Gurinovich2

1Grodno State Agrarian University, Belarus;
2Institute of Biochemistry of Biologically Active Compounds,  National Academy of Sciences of Belarus;
3Yanka Kupala State University of Grodno, Belarus;

Adenosine thiamine triphosphate (AThTP), a vitamin B1 containing nucleotide with unknown biochemi­cal role, was found previously to be present in various biological objects including bacteria, yeast, some human, rat and mouse tissues, as well as plant roots. In this study we quantify AThTP in mouse, rat, bovine and chicks. We also show that in animal tissues the hydrolysis of AThTP is catalyzed by a membrane-bound enzyme seemingly of microsomal origin as established for rat liver, which exhibits an alkaline pH optimum of 8.0-8.5 and requires no Mg2+ ions for activity. In liver homogenates, AThTP hydrolase obeys Michaelis-Menten kinetics with apparent Km values of 84.4 ± 9.4 and 54.6 ± 13.1 µМ as estimated from the Hanes plots for rat and chicken enzymes, respectively. The hydrolysis of AThTP has been found to occur in all samples examined from rat, chicken and bovine tissues, with liver and kidney being­ the most abundant in enzyme activity. In rat liver, the activity of AThTP hydrolase depends on the age of animals.

Keywords: , , ,


  1. Metzler DE. Biochemistry. The Chemical Reactions of Living Cells. Harcourt/Academic Press. – 2nd ed. 2001, Vol 1, 937 p.
  2. Zhao J, Zhong CJ. A review on research progress of transketolase. Neurosci Bull. 2009 Apr;25(2):94-9. PubMed, PubMedCentral, CrossRef
  3. Casteels M, Sniekers M, Fraccascia P, Mannaerts GP, Van Veldhoven PP. The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids. Biochem Soc Trans. 2007 Nov;35(Pt 5):876-80. PubMed, CrossRef
  4. Makarchikov AF. Vitamin B1: metabolism and functions. Biochemistry (Moscow) Suppl Ser B: Biomed Chem. 2009; 3(2): 116-128.  CrossRef
  5. Bettendorff L, Wirtzfeld B, Makarchikov AF, Mazzucchelli G, Frédérich M, Gigliobianco T, Gangolf M, De Pauw E, Angenot L, Wins P.Discovery of a natural thiamine adenine nucleotide. Nat Chem Biol. 2007 Apr;3(4):211-2. PubMed, CrossRef
  6. Gigliobianco T, Lakaye B, Wins P, El Moualij B, Zorzi W, Bettendorff L. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. BMC Microbiol. 2010 May 21;10:148. PubMed, PubMedCentral, CrossRef
  7. Tanaka T, Yamamoto D, Sato T, Tanaka S, Usui K, Manabe M, Aoki Y, Iwashima Y, Saito Y, Mino Y, Deguchi H. Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity. J Nutr Sci Vitaminol (Tokyo). 2011;57(2):192-6. PubMed, CrossRef
  8. Makarchikov AF, Brans A, Bettendorff L. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate. BMC Biochem. 2007 Aug 16;8:17. PubMed, PubMedCentral, CrossRef
  9. Chernikevich IP, Gritsenko EA, Makarchikov AF, Voskoboev AI. Fermentation micromethod for the quantitative determination of thiamine diphosphate in biological fluids. Prikl Biokhim Mikrobiol. 1991 Sep-Oct;27(5):762-71. (In Russian). PubMed
  10. Bettendorff L, Peeters M, Jouan C, Wins P, Schoffeniels E. Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method. Anal Biochem. 1991 Oct;198(1):52-9. PubMed, CrossRef
  11. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346-56. PubMed, CrossRef
  12. Frédérich M, Delvaux D, Gigliobianco T, Gangolf M, Dive G, Mazzucchelli G, Elias B, De Pauw E, Angenot L, Wins P, Bettendorff L. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. FEBS J. 2009 Jun;276(12):3256-68. PubMed, CrossRef
  13. Gangolf M, Czerniecki J, Radermecker M, Detry O, Nisolle M, Jouan C, Martin D, Chantraine F, Lakaye B, Wins P, Grisar T, Bettendorff L. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One. 2010 Oct 25;5(10):e13616.  PubMed, PubMedCentral, CrossRef
  14. Parkhomenko YuM, Pavlova AS, Mejenskaya OA, Stepanenko SP, Chekhivska LI. Thiamine diphosphate synthesis and redox state indicator in rat brain during of B(1) hypovitaminosis. Ukr Biochem J. 2017; 89(5): 84-95.  CrossRef
  15. Voskoboyev AI, Chernikeevich IP. Biosynthesis, degradation and transport of thiamine phosphoric esters. Minsk: Nauka and Tekhnika, 1987. 200 p. (In Russian).
  16. Makarchikov AF, Chernikevich IP. Purification and characterization of thiamine triphosphatase from bovine brain. Biochim Biophys Acta. 1992 Oct 27;1117(3):326-32. PubMed, CrossRef
  17. Ogawa K, Sakai M, Inomata K. Recent findings on ultracytochemistry of thiamin phosphatases. Ann N Y Acad Sci. 1982;378(1):188-214. PubMed, CrossRef
  18. Makarchikov AF, Luchko TA, Rusina IM, Gulyai IE, Makar EA. Studies on enzymes of thiamine mono- and diphosphate hydrolysis in the membrane preparations from bovine tissues. Proc Natl Acad Sci Belarus, Biol Series. 2009; 2: 62-66. (In Russian).
  19. Yamazaki M, Hayaishi O. Allosteric properties of nucleoside diphosphatase and its identity with thiamine pyrophosphatase. J Biol Chem. 1968 Jun 10;243(11):2934-42. PubMed
  20. Sano S, Matsuda Y, Miyamoto S, Nakagawa H. Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain. Biochem Biophys Res Commun. 1984 Jan 13;118(1):292-8. PubMed, CrossRef
  21. Eaton RH, Moss DW. Organic pyrophosphates as substrates for human alkaline phosphatases. Biochem J. 1967 Dec;105(3):1307-12. PubMed, PubMed, CrossRef
  22. Stevens TJ, Arkin IT. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins. 2000 Jun 1;39(4):417-20. PubMed, CrossRef
  23. Makarchikov AF, Lakaye B, Gulyai IE, Czerniecki J, Coumans B, Wins P, Grisar T, Bettendorff L. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell Mol Life Sci. 2003 Jul;60(7):1477-88. PubMed, CrossRef
  24. Kolas IK, Makarchikov AF. Copurification of chicken liver soluble thiamine monophosphatase and low molecular weight acid phosphatase. Ukr Biochem J. 2017; 89(6): 13-21.  CrossRef
  25. Barchi RL, Braun PE. A membrane-associated thiamine triphosphatase from rat brain. Properties of the enzyme. J Biol Chem. 1972 Dec 10;247(23):7668-73. PubMed
  26. Bettendorff L, Michel-Cahay C, Grandfils C, De Rycker C, Schoffeniels E. Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus. J Neurochem. 1987 Aug;49(2):495-502. PubMed, CrossRef
  27. Kolas IK, Makarchikov AF. Properties of chicken liver membrane-associated thiamine triphosphatase. Ukr Biochem J. 2015 May-Jun;87(3):37-46. (In Russian). PubMed, CrossRef
  28. Guranowski A, Wojdyła AM, Pietrowska-Borek M, Bieganowski P, Khurs EN, Cliff MJ, Blackburn GM, Błaziak D, Stec WJ. Fhit proteins can also recognize substrates other than dinucleoside polyphosphates. FEBS Lett. 2008 Sep 3;582(20):3152-8. PubMed, CrossRef
  29. Cameselle JC, Costas MJ, Günther Sillero MA, Sillero A. Two low Km hydrolytic activities on dinucleoside 5′,5″‘-P1,P4-tetraphosphates in rat liver. Characterization as the specific dinucleoside tetraphosphatase and a phosphodiesterase I-like enzyme. J Biol Chem. 1984 Mar 10;259(5):2879-85. PubMed
  30. Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012 Sep;8(3):437-502. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.