Ukr.Biochem.J. 2019; Volume 91, Issue 3, May-Jun, pp. 78-89

doi: https://doi.org/10.15407/ubj91.03.078

New anti-candida active nitrogen-containing bisphosphonates as inhibitors of farnesyl pyrophosphate synthase Candida albicans

L. O. Metelytsia, D. M. Hodyna, O. L. Kobzar,
V. V. Kovalishyn, I. V. Semenyuta

V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry,
National Academy of Sciences of Ukraine, Kyiv;
e-mail: ivan@bpci.kiev.ua

Received: 05 February 2019; Accepted: 14 March 2019

In our previous work, a number of new nitrogen-containing bisphosphonates (N-BPs) with high predicted and experimental antifungal activity were presented as potential Candida albicans farnesyl pyrophos­phate synthase (FPPS) inhibitors. To confirm this hypothesis, a homologous C. albicans FPPS model with high-quality scores has been developed and used in present work to study the molecular mechanism of nit­rogen-containing bisphosphonates action as anti-Candida agents. The known FPPS inhibitors ammonium 2-(Pyridin-2-ylamino)ethylidene-1,1-bisphosphonate, risedronate and alendronate were used in molecular docking analysis. The molecular docking analysis of the new N-BPs demonstrated a number of common features of all ligand’s interaction in the active center of FPPS C. albicans. It is established that the ligands phosphonate groups are the key elements in the formation of the stable ligand-protein complexes with binding energy in a range (ΔG) from –6.6 to –7.1 kcal/mol due to a significant number of electrostatic, hydrogen and metal-acceptor bonds. It is confirmed that the new studied N-BPs 1 and 3 with high anti-Candida activity are FPPS inhibitors.

Keywords: , , , ,


References:

  1. Giger EV, Castagner B, Leroux JC. Biomedical applications of bisphosphonates. J Control Release. 2013 Apr 28;167(2):175-88. PubMed, CrossRef
  2. Coleman R. The use of bisphosphonates in cancer treatment. Ann N Y Acad Sci. 2011;1218(1):3–14. CrossRef
  3. Fraunfelder FW. Ocular side effects associated with bisphosphonates. Drugs Today (Barc). 2003 Nov;39(11):829-35. PubMed, CrossRef
  4. Grey A, Reid IR. Differences between the bisphosphonates for the prevention and treatment of osteoporosis. Ther Clin Risk Manag. 2006 Mar;2(1):77-86.
    PubMed, PubMedCentral
  5. Martin MB, Grimley JS, Lewis JC, Heath HT 3rd, Bailey BN, Kendrick H, Yardley V, Caldera A, Lira R, Urbina JA, Moreno SN, Docampo R, Croft SL, Oldfield E. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem. 2001 Mar 15;44(6):909-16. PubMedCrossRef
  6. Yardley V, Khan AA, Martin MB, Slifer TR, Araujo FG, Moreno SN, Docampo R, Croft SL, Oldfield E. In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrob Agents Chemother. 2002 Mar;46(3):929-31. PubMed, PubMedCentral, CrossRef
  7. Docampo R, Moreno SN. Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites. Curr Drug Targets Infect Disord. 2001 May;1(1):51-61. PubMed, CrossRef
  8. Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother. 2003 Jul;47(7):2366-9. PubMed, PubMedCentral, CrossRef
  9. Prokopenko V, Kovalishyn V, Shevchuk M, Kopernyk I, Metelytsia L, Romanenko V, Mogilevich S, Kukhar V. Design and synthesis of new potent inhibitors of farnesyl pyrophosphate synthase. Curr Drug Discov Technol. 2014 Jun;11(2):133-44. PubMed, CrossRef
  10. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493-6. PubMed, CrossRef
  11. Sanders JM, Gómez AO, Mao J, Meints GA, Van Brussel EM, Burzynska A, Kafarski P, González-Pacanowska D, Oldfield E. 3-D QSAR investigations of the inhibition of Leishmania major farnesyl pyrophosphate synthase by bisphosphonates. J Med Chem. 2003 Nov 20;46(24):5171-83. PubMed, CrossRef
  12. Russell RG.  Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007; 119(2): S150-62.  CrossRef
  13. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci USA. 2006 May 16;103(20):7829-34. PubMed, PubMedCentral, CrossRef
  14. https://www.uniprot.org/uniprot/C4YIE1
  15. https://www.uniprot.org/uniprot/Q4QBL1
  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403-10. PubMed, CrossRef
  17. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303.  PubMed, PubMedCentral, CrossRef
  18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009 Dec 15;10:421. PubMed, PubMed, CrossRef
  19. Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods. 2011 Dec 25;9(2):173-5. PubMed, CrossRef
  20. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993 Sep;2(9):1511-9. PubMed, PubMedCentral, CrossRef
  21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK – a program to check the stereochemical quality of protein structures. J App Cryst. 1993; 26(2): 283-291.  CrossRef
  22. Semenyuta I, Kovalishyn V, Tanchuk V, Pilyo S, Zyabrev V, Blagodatnyy V, Trokhimenko O, Brovarets V, Metelytsia L. 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study. Comput Biol Chem. 2016 Dec;65:8-15. PubMed, CrossRef
  23. Kachaeva MV, Hodyna DM, Semenyuta IV, Pilyo SG, Prokopenko VM, Kovalishyn VV, Metelytsia LO, Brovarets VS. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput Biol Chem. 2018 Jun;74:294-303. PubMed, CrossRef
  24. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999 Feb;17(1):57-61. PubMed
  25. Dassault Systèmes BIOVIA, Discovery Studio, 2.5.5, San Diego: Dassault Systèmes, 2019.
  26. http://www.rcsb.org/structure/4K10
  27. ChemAxon MarvinSketch, 5.3.735. http://www.chemaxon.com, 2019.
  28. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012 Aug 13;4(1):17.  PubMed, PubMedCentral, CrossRef
  29. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.