Ukr.Biochem.J. 2020; Volume 92, Issue 1, Jan-Feb, pp. 92-102
doi: https://doi.org/10.15407/ubj92.01.092
Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of Xanthomonas citri subsp. citri
R. Moravej1, S. M. Alavi2, M. Azin3, A. H. Salmanian2
1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran;
2Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran;
3Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran;
e-mail: mealavi@nigeb.ac.ir
Received: 30 September 2019; Accepted: 29 November 2019
Xanthan is a biopolymer produced by Xanthomonas bacteria which is widely used in many industries such as food and oil. In this work, three Xanthomonas strains (X. citri/NIGEB-88, X. citri/NIGEB-386 and X. citri/NIGEB-K37) were used to evaluate their industrial potential to produce xanthan gum in whey medium. Bacteria growth rate, viscosity, biomass, dry weigh of produced xanthan and β-galactosidase activity were studied during the fermentation process and the presence of β-galactosidase genes was assessed by PCR technique. Strain NIGEB-386 had the best ability to utilize lactose in the whey medium. The highest amount of xanthan production and viscosity were 22.7 g/l and 2066.6 mPa·s, respectively. The presence of six β-galactosidase genes in strains NIGEB-386 and NIGEB-K37 was confirmed. The pyruvate and acetyl contents in xanthan gum were 2.1 and 0.29 %, respectively. Fourier-transform infrared spectroscopy analysis determined the position of the functional groups in the structure of the fermentation product. In whey medium, the performance of both NIGEB-386 and NIGEB-K37 strains were better than the X. campestris. The findings showed that Xanthomonas citri/NIGEB-386 is suitable for industrial production of xanthan using cheese whey as a low-cost medium.
Keywords: cheese whey, FTIR, pyruvate and acetate content, Xanthan gum, Xanthomonas citri, β-galactosidase
References:
- Guo Y, Sagaram US, Kim J-s, Wang N. Requirement of the galU gene for polysaccharide production by and pathogenicity and growth In Planta of Xanthomonas citri subsp. citri. Appl Environ Microbiol. 2010;76(7):2234-42. PubMed, PubMed, CrossRef
- Pegos VR, Canevarolo RR, Sampaio AP, Balan A, Zeri ACM. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas Axonopodis Pv. Citri 306. Metabolites. 2014;4(2):218-31. PubMed, PubMed, CrossRef
- Garcia-Ochoa F, Santos VE, Casas JA, Gómez E. Xanthan gum: production, recovery, and properties. Biotechnol Adv. 2000;18(7):549-79. PubMed, CrossRef
- Mirik M, Demirci AS, Gumus T, Arici M. Xanthan gum production under different operational conditions by Xanthomonas axonopodis pv vesicatoria isolated from pepper plant. Food Sci Biotechnol. 2011;20(5):1243-1247. CrossRef
- Lopes BM, Lessa VL, Silva BM, Carvalho Filho MAS, Schnitzler E, Lacerda LG. Xanthan gum: properties, production conditions, quality and economic perspective. J Food Nutr Res. 2015;54(3):185-194.
- Kool MM, Gruppen H, Sworn G, Schols HA. Comparison of xanthans by the relative abundance of its six constituent repeating units. Carbohydr Polym. 2013;98(1):914-21. PubMed, CrossRef
- Palaniraj A, Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng. 2011;106(1):1-12. CrossRef
- Gunasekar V, Reshma KR, Treesa G, Gowdhaman D, Ponnusami V. Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation. Carbohydr Polym. 2014;102:669-73. PubMed, CrossRef
- Niknezhad SV, Asadollahi MA, Zamani A, Biria D, Doostmohammadi M. Optimization of xanthan gum production using cheese whey and response surface methodology. Food Sci Biotechnol. 2015;24(2):453-60. CrossRef
- Yang TC, Hu RM, Weng SF, Tseng YH. Identification of a hypothetical protein of plant pathogenic Xanthomonas campestris as a Novel β-galactosidase. J Mol Microbiol Biotechnol. 2007;13(1-3):172-80. PubMed, CrossRef
- Yang TC, Hu RM, Hsiao YM, Weng SF, Tseng YH. Molecular genetic analyses of potential β-galactosidase genes in Xanthomonas campestris. J Mol Microbiol Biotechnol. 2003;6(3-4):145-54. PubMed, CrossRef
- Ashraf S, Soudi MR, Sadeghizadeh M. Isolation of a novel mutated strain of Xanthomonas campestris for xanthan production using whey as the sole substrate. Pak J Biol Sci. 2008;11(3):438-42. PubMed, CrossRef
- Kamal F, Mehrgan H, Assadi MM, Mortazavi SA. Mutagenesis of Xanthomonas campestris and selection of strains with enhanced xanthan production. Iran Biomed J. 2003;7(3):91-98.
- Schwartz RD, Bodie AE. Production of high-viscosity whey broths by a lactose-utilizing Xanthomonas campestris strain. App Environ Microbiol. 1985;50(6):1483-5. PubMed, PubMedCentral, CrossRef
- Ramezani A, Jafari M, Goodarzi T, Alavi SM, Salmanian AH, Azin M. Lactose consuming strains of Xanthomonas citri subsp. citri (Xcc) insight into the emergence of natural field resources for xanthan gum production. World J Microbiol Biotechnol. 2014;30(5):1511-7. PubMed, CrossRef
- Mesomo M, Silva MF, Gabriela Boni, Padilha FF, Mazutti M, Mossi A, de Oliveira D, Cansian RL, Luccio M, Treichel H. Xanthan gum produced by Xanthomonas campestris from cheese whey: production optimisation and rheological characterisation. J Sci Food Agric. 2009;89(14):2440-2445. CrossRef
- Vujicic IF, Lin AY, Nickerson TA. Changes during acid hydrolysis of Lactose. J Dairy Sci. 1977;60(1):29-33. CrossRef
- Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426-428. CrossRef
- Soleymanpour Z, Nikzad M, Talebnia F, Niknezhad V. Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris. 3 Biotech. 2018;8(7):296. PubMed, PubMedCentral, CrossRef
- Moosavi A, Karbassi A. Bioconversion of sugar-beet molasses into xanthan gum. J Food Process Preserv. 2010;34(2):316-322. CrossRef
- Erten T, Adams GG, Foster TJ, Harding SE. Comparative heterogeneity, molecular weights and viscosities of xanthan of different pyruvate and acetate content. Food Hydrocol. 2014;42:335-341. CrossRef
- Faria S, de Oliveira Petkowicz CL, de Morais SAL, Terrones MGH, de Resende MM, de França FP, Cardoso VL. Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym. 2011;86(2):469-76. CrossRef
- Gumus T, Demirci AS, Mirik M, Arici M, Aysan Y. Xanthan gum production of Xanthomonas spp. Isolated from different plants. Food Sci Biotechnol. 2010;19(1):201-206. CrossRef
- Silva MF, Fornari RCG, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Di Luccio M, Treichel H. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng. 2009;90(1):119-123. CrossRef
- Rodriguez-R LM, Grajales A, Arrieta-Ortiz ML, Salazar C, Restrepo S, Bernal A. Genomes-based phylogeny of the genus Xanthomonas. BMC Microbiol. 2012;12:43. PubMed, PubMedCentral, CrossRef
- Fu JF, Tseng YH. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microbiol. 1990;56(4):919-23. PubMed, PubMedCentral, CrossRef
- Jalali A, Alavi SM, Sangtarash MH. Comparative genomic analysis of wide and narrow host range strains of Xanthomonas citri subsp. citri, showing differences in the genetic content of their pathogenicity and virulence factors. Australas Plant Pathol. 2017;46(1):49-61. CrossRef
- da Silva JA, Cardoso LG, de Jesus Assis D, Gomes GVP, Oliveira MBPP, de Souza CO, Druzian JI. Xanthan Gum Production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from Lignocellulosic Agroindustrial Wastes. Appl Biochem Biotechnol. 2018;186(3):750-763. PubMed, CrossRef
- Rehm BHA. Microbial production of biopolymers and polymer precursors: applications and perspectives, First ed., Caister Academic, Press, New Zealand 2009.
- Zakeri A, Pazuki M, Vossugi M. Development of kinetic model for xanthan production in a laboratory-scale batch fermentor. Iran J Sci Technol Trans A Sci. 2018;42(1):261-266. CrossRef
