Tag Archives: FTIR

Comparative cytotoxic activity of carboplatin and β-cryptoxanthin in free and liposomal forms against breast cancer cell line

M. W. Shafaa*, N. S. Elkholy

Physics Department, Medical Biophysics Division, Faculty of Science,
Helwan University, Cairo, Egypt;
*e-mail: medhatwi@hotmail.com

Received: 1 June 2020; Accepted: 17 May 2021

The study of the effectiveness of the synthetic and natural anticarcinogenic compounds in liposomal form is urgent for their possible use in therapy. In this work, the alkylating agent carboplatin and the representative of carotenoids β-cryptoxanthin were used. The aim of the research was to study the toxicity of these compounds in free and liposomal forms against breast cancer MCF-7 cell line. According to DSC and FTIR data, when carboplatin or β-cryptoxanthin were added to liposomal bilayers, a single peak was observed indicating their mutual mixing. Integration of  β-cryptoxanthin into bilayer was found to be more proper for the creation of PE acyl chains ordered and cooperative state. It was found that MCF-7 cells sensitivity was much higher to the free β-cryptoxanthin than to the free carboplatin with IC50 42 and 235 μg/ml, respectively. The IC50 values for β-cryptoxanthin loaded into liposomes and for free carboplatin were similar. At the same time, no cytotoxic effect of carboplatin-loaded liposomes was observed. The data obtained allow proposing a possible antitumor treatment regimen where carboplatin is replaced by free β-cryptoxanthin or its liposomal form to increase the effectiveness of breast cancer therapy.

Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of Xanthomonas citri subsp. citri

R. Moravej1, S. M. Alavi2, M. Azin3, A. H. Salmanian2

1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran;
2Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran;
3Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran;
e-mail: mealavi@nigeb.ac.ir

Received: 30 September 2019; Accepted: 29 November 2019

Xanthan is a biopolymer produced by Xanthomonas bacteria which is widely used in many industries such as food and oil. In this work, three Xanthomonas strains (X. citri/NIGEB-88, X. citri/NIGEB-386 and X. citri/NIGEB-K37) were used to evaluate their industrial potential to produce xanthan gum in whey medium. Bacteria growth rate, viscosity, biomass, dry weigh of produced xanthan and β-galactosidase activity were studied during the fermentation process and the presence of β-galactosidase genes was assessed by PCR technique. Strain NIGEB-386 had the best ability to utilize lactose in the whey medium. The highest amount of xanthan production and viscosity were 22.7 g/l and 2066.6 mPa·s, respectively. The presence of six β-galactosidase genes in strains NIGEB-386 and NIGEB-K37 was confirmed. The pyruvate and acetyl contents in xanthan gum were 2.1 and 0.29 %, respectively. Fourier-transform infrared spectroscopy analysis determined the position of the functional groups in the structure of the fermentation product. In whey medium, the performance of both NIGEB-386 and NIGEB-K37 strains were better than the X. campestris. The findings showed that Xanthomonas citri/NIGEB-386 is suitable for industrial production of xanthan using cheese whey as a low-cost medium.