Ukr.Biochem.J. 2020; Volume 92, Issue 6, Nov-Dec, pp. 143-153


Honeybee chitosan-melanin complex: isolation and investigation of antimicrobial activity

M. Lootsik1, N. Manko1, O. Gromyko2,
S. Tistechok2, M. Lutsyk (Jr.)3, R. Stoika1*

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Ivan Franko National University of Lviv, Ukraine;
3Danylo Halytsky Lviv National Medical University, Ukraine;

Received: 4 May 2020; Accepted: 13 November 2020

Antimicrobial activity of marine crustaceans chitosans is well studied and is widely used in medicine, while chitosans of insects are poorly investigated in this aspect, though they might also be of practical significance. The aim of this study was to isolate and purify chitosan-melanin complex (CMC) from the honeybee­ corpses and to estimate its antimicrobial activity. Antibacterial activity of CMC was evaluated by MTT test, antifungal activity towards Candida albicans was estimated by calculating colony forming units (CFU method). The modified method of CMC isolation and purification was described which differs from the known analogs in deacetylation of chitin-melanin complex by its hydrolysis in 40% NaOH without previous melanin elimination and in further purification of CMC by differential solubilization at distinct pH values. The anti-microbial activity of CMC was characterized by prevalence of candidacidal effect, IC50 towards laboratory strain of C. albicans was 50 μg/ml. The ranking of studied bacteria sensitivity to the CMC action decreased as: E. coli > St. aureus > Ps. aeruginosa. It is suggested that CMC isolated from the honeybee corpses might be a perspective constituent of medicinal compositions for treatment of lesions caused by C. albicans infection.

Keywords: , , ,


  1. Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother. 1990;34(10):2019-2023. PubMed, PubMedCentral, CrossRef
  2. Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011;9(7):857-879. PubMed, PubMedCentral, CrossRef
  3. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011; 29(3):322-337. PubMed, CrossRef
  4. Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Jansson HB, Lopez-Llorca LV, Salinas J, Gerasimenko DV, Avdienko ID, Varlamov VP. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr Polyme. 2006;64(1):66-72. CrossRef
  5. Kulikov SN, Tikhonov VE, Blagodatskikh IV, Bezrodnykh EA, Lopatin S, Khairullin R, Philippova Yu, Abramchuk S. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydr Polym. 2012;87(1):545-550. CrossRef
  6. Blagodatskikh IV, Kulikov SN, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE. N-Reacetylated Oligochitosan: pH Dependence of Self-Assembly Properties and Antibacterial Activity. Biomacromolecules. 2017;18(5):1491-1498.  PubMed, CrossRef
  7. Holubnycha V, Kalinkevich O, Ivashchenko O, Pogorielov M. Antibacterial Activity of In Situ Prepared Chitosan/Silver Nanoparticles Solution Against Methicillin-Resistant Strains of Staphylococcus aureus. Nanoscale Res Lett. 2018;13(1):71. PubMed, PubMedCentral, CrossRef
  8. Radwan-Pragłowska J, Piątkowski M, Deineka V, Janus Ł, Korniienko V, Husak E, Holubnycha V, Liubchak I, Zhurba V, Sierakowska A, Pogorielov M, Bogdał D. Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties-Synthesis and Characterization. Molecules. 2019;24(14):2629.
    PubMed, PubMedCentral, CrossRef
  9. Nemtsev SV, Zueva OIu, Khismatullin MR, Albulov AI, Varlamov VP. Isolation of chitin and chitosan from honey bees. Prikl Biokhim Mikrobiol. 2004;40(1):46-50. (In Russian).  PubMed
  10. Pat. Ru 2 382 051, Int.Cl. C08B 37/00. Method of obtaining of chitosan-melanin complex from bee corpses/ Selionova M.I., Pogarskaya N.I.  Publ.20.02.2010, N 5. (In Russian).
  11.  Draczynski Z. Honeybee corpses as an available source of chitin. J Appl Polym Sci. 2008;109(3):1974–1981. CrossRef
  12. Marei NH, Abd El-Samie E, Salah T, Saad GR, Elwahy AHM. Isolation and characterization of chitosan from different local insects in Egypt. Int J Biol Macromol. 2016;82:871-877. PubMed, CrossRef
  13. Tyliszczak B, Drabczyk A, Kudłacik S, Bialik-Was K, Sobczak-Kupiec A. Beetosan/chitosan from bees – preparation and properties. Int J Adv Sci Eng Technol. 2016;4(2):118-120.
  14. Bakulin AV, Veleshko IYe, Rumyantseva YeV, Levov AN, Burmistrova LA, Kurchenko VP, Khismatullin RG, Varlamov VP, Krivtsov NI. Production of chitin-melanin complexes from Apis mellifera and studying the opportunity of their usage as radionuclide sorbents.  Dokl RAAS. 2011;(5):48-51. (In Russian). CrossRef
  15. Tyliszczak B, Drabczyk A, Kudłacik S. Comparison of Hydrogels Based on Commercial Chitosan and Beetosan ® Containing Nanosilver. Molecules. 2016;22(1):61. PubMed, PubMedCentral, CrossRef
  16. Tyliszczak B, Kudlacik-Kramarczyk S, Drabczyk A, Bogucki R, Olejnik E, Kinasiewicz  J, Gląb M.  Hydrogels containing caffeine and based on Beetosan – proecological chitosan – preparation, characterization, and in vitro cytotoxicity. Int J Polym Mater Polym Biomater. 2019; 68(15): 931-935. CrossRef
  17. Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Grabowska B, Kędzierska M. Physicochemical properties and cytotoxicity of hydrogels based on Beetosan® containing sage and bee pollen. Acta Biochim Pol. 2017;64(4):709-712. PubMed, CrossRef
  18. Lootsik MD, Bilyy RO, Lutsyk MM, Stoika RS. Preparation of chitosan with high blood clotting activity and its hemostatic potential assessment. Biotechnol Acta. 2015;8(6):32-41. CrossRef
  19. Lootsik MD, Bilyy RO, Lutsyk MM, Manko NO, Navytka SA, Kutsiaba VI, Stoika RS. Honeybee (Apis mellifera) chitosan: purification, heterogeneity and hemocoagulation activity. Biotechnol Acta. 2016;9(6):39-49. CrossRef
  20. Walencka E, Rózalska S, Sadowska B, Rózalska B. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol (Praha). 2008;53(1):61-66. PubMed, CrossRef
  21. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochem. 2018;120(4):303-311. PubMed, CrossRef
  22. Kulikov SN, Tikhonov VE, Bezrodnykh EA, Lopatin SA, Varlamov VP.  Comparative evaluation of antimicrobial activity of oligochitosans against Klebsiella pneumoniae. Russ J Bioorg Chem. 2015;41(1):57-62. (In Russian). PubMed, CrossRef
  23. Raafat D, von Bargen K, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008;74(12):3764-3773. PubMed, PubMedCentral, CrossRef
  24. Peña A, Sánchez NS, Calahorra M. Effects of chitosan on Candida albicans: conditions for its antifungal activity. Biomed Res Int. 2013;2013:527549. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.