Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 14-20

doi: https://doi.org/10.15407/ubj93.05.014

Covid-19 pandemic quarantine and social jetlag

M. Sahraei1, G. H. Meftahi2, H. Sahraei2*

1School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran;
2Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran;
*e-mail: h.sahraei@bmsu.ac.ir or hsahraei1343@gmail.com

Received: 31 January 2021; Accepted: 22 September 2021

Covid-19 pandemic forced the governments to choose the policy to the lockdown the gathering centers­, including universities and schools to prevent the rapid spread of the disease, forcing millions of people to stay at home for several weeks and even more. Staying in the home for such long periods is associated with a change in the wake/sleep period (a kind of social jet lag) and the resulting alteration in feeding time and type of food. Moreover, the prevalence of anxiety and depression resulted from the reduction in physical activity and bad news also may help to worsen the social jetlag effect on these parts of society. Possible hazardous changes in this factor are reviewed in this study and some suggestions for better management of this condition are also offered. Pubmed, SCOPUS, WOS, and Google Scholar data banks were searched using the following keyword in combination and/or alone: jetlag, social jetlag, Chronobiology, photoperiod, metabolic disease, cardiovascular, sleep/weak period. Longtime lockdown gathering centers are shown to change the photoperiod cycle in people, and it may induce several consequences, including the effects on cognitive brain function, induce mental illness, metabolic syndrome, insulin resistance, mitochondrial aging, and cardiovascular diseases. Considering these facts, it is important to make rehabilitation programs for all the societies’ members for post-pandemic time.

Keywords: , , , , , ,


References:

  1. Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. Science. 2020;368(6498):1422-1424. PubMedCrossRef
  2. Meftahi GH, Z. Bahari Z, Jangravi Z, Iman M. A vicious circle between oxidative stress and cytokine storm in acute respiratory distress syndrome pathogenesis at COVID-19 infection. Ukr Biochem J. 2021;93(1):18-29. CrossRef
  3. Silver RC. Surviving the trauma of COVID-19. Science. 2020;369(6499):11. PubMed, CrossRef
  4. Romagnoli S, Peris A, De Gaudio AR, Geppetti P. SARS-CoV-2 and COVID-19: From the Bench to the Bedside. Physiol Rev. 2020;100(4):1455-1466.  PubMed, PubMedCentral, CrossRef
  5. Henderson SEM, Brady EM, Robertson N. Associations between social jetlag and mental health in young people: A systematic review. Chronobiol Int. 2019;36(10):1316-1333. PubMed, CrossRef
  6. Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and Social Jetlag: A (Self-) Critical Review. Biology (Basel). 2019;8(3):54. PubMed, PubMedCentral, CrossRef
  7. Tsang AH, Astiz M, Friedrichs M, Oster H. Endocrine regulation of circadian physiology. J Endocrinol. 2016;230(1):R1-R11. PubMed, CrossRef
  8. Challet E. Keeping circadian time with hormones. Diabetes Obes Metab. 2015;17(Suppl 1):76-83. PubMed, CrossRef
  9. Hernández-García J, Navas-Carrillo D, Orenes-Piñero E. Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Crit Rev Food Sci Nutr. 2020;60(6):1038-1047. PubMed, CrossRef
  10. Mason IC, Qian J, Adler GK, Scheer FAJL. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia. 2020;63(3):462-472. PubMed, PubMedCentral, CrossRef
  11. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912-920. PubMed, PubMedCentral, CrossRef
  12. Mota MC, Silva CM, Balieiro LCT, Fahmy WM, Crispim CA. Social jetlag and metabolic control in non-communicable chronic diseases: a study addressing different obesity statuses. Sci Rep. 2017;7(1):6358. PubMed, PubMedCentral, CrossRef
  13. Bagci S, Sabir H, Müller A, Reiter  J. Effects of altered photoperiod due to COVID-19 lockdown on pregnant women and their fetuses. Chronobiol Int. 2020;37(7):961-973. PubMed, CrossRef
  14. Bruckdorfer KR, Kang SS, Khan IH, Bourne AR, Yudkin J. Diurnal changes in the concentrations of plasma lipids, sugars, insulin and corticosterone in rats fed diets containing various carbohydrates. Horm Metab Res. 1974;6(2):99-106. PubMed, CrossRef
  15. Kim TW, Jeong JH, Hong SC. The impact of sleep and circadian disturbance on hormones and metabolism. Int J Endocrinol. 2015;2015:591729. PubMed, PubMedCentral, CrossRef
  16. Bornstein SR, Dalan R, Hopkins D , Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297-298. PubMed, PubMedCentral, CrossRef
  17. Heni M, Kullmann S, Preissl H, Fritsche A, Häring HU. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11(12):701-711. PubMed, CrossRef
  18. Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol. 2013;23(5):372-381. PubMed, PubMedCentral, CrossRef
  19. Owino S, Sánchez-Bretaño A, Tchiov C, Cecon E, Karamitri A, Dam J, Jockers R, Piccione G, Noh HL, Kim T, Kim K, Baba K, Tosini G. Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res. 2018;64(3):e12462. PubMed, PubMedCentral, CrossRef
  20. Shahyad S, Mohammadi MT. Psychological impacts of Covid-19 outbreak on mental health status of society individuals: a narrative review. J Mil Med. 2020;22(2):184-192.
  21. Briançon-Marjollet A, Weiszenstein M, Henri M, Thomas A, Godin-Ribuot D, Polak J. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms. Diabetol Metab Syndr. 2015;7:25.  PubMed, PubMedCentral, CrossRef
  22. Qian J, Scheer FAJL. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol Metab. 2016;27(5):282-293. PubMed, PubMedCentral, CrossRef
  23. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939-943. PubMed, CrossRef
  24. Mathew GM, Hale L, Chang AM. Social jetlag, eating behaviours and BMI among adolescents in the USA. Br J Nutr. 2020;124(9):979-987. PubMed, PubMedCentral, CrossRef
  25. Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, Poulton R, Caspi A. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes (Lond). 2015;39(5):842-848. PubMed, PubMedCentral, CrossRef
  26. Cao Y, Wang RH. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases. Aging Dis. 2017;8(3):314-333. PubMed, PubMedCentral, CrossRef
  27. Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol. 2018;20(7):755-765. PubMed, PubMedCentral, CrossRef
  28. Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol. 2018;49:72-85. PubMed, PubMedCentral, CrossRef
  29. Makrecka-Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, de Goede P, O’Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf). 2020;228(3):e13430. PubMedCrossRef
  30. Ruiz-Gayo M, Olmo ND. Interaction Between Circadian Rhythms, Energy Metabolism, and Cognitive Function. Curr Pharm Des. 2020;26(20):2416-2425. PubMed, CrossRef
  31. McEwen BS, Gray JD, Nasca C. 60 Years of Neuroendocrinology: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol. 2015;226(2):T67-T83. PubMed, PubMedCentral, CrossRef
  32. McEwen BS. Effects of adverse experiences for brain structure and function. Biol Psychiatry. 2000;48(8):721-731. PubMed, CrossRef
  33. Ellwanger JH, Lekgoathi MDS, Nemani K, Tarselli MA, Al Harraq  A, Uzonyi A, Dutton-Regester K, Yoho R, Srivastava S, Strong M, Li Y, Fu J, Waiho K, Beltrán IM, Mukherjee A, Brunet TDP. News from a postpandemic world. Science. 2020;369(6499):26-29. PubMed, PubMedCentral, CrossRef
  34. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873-904. PubMed, CrossRef
  35. Nelson R, Martin L. Seasonal changes in stress responses. Stress Science: Neuroendocrinol. 2010;440.
  36. Correa A, Alguacil S, Ciria LF, Jiménez A , Ruz M. Circadian rhythms and decision-making: a review and new evidence from electroencephalography. Chronobiol Int. 2020;37(4):520-541. PubMed, CrossRef
  37. Luo Q, Xiao Y, Alex A, Cummins TR, Bhatwadekar AD. The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1. Invest Ophthalmol Vis Sci. 2019;60(6):1928-1936. PubMed, PubMedCentral, CrossRef
  38. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16(11):660-671. PubMed, CrossRef
  39. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453-462. PubMed, CrossRef
  40. Faraji N, Shiravi A, Bahari Z, Shirvani H, Meftahi GH. Basolateral amygdala α1-adrenergic receptor suppression attenuates stress-induced anxiety-like behavior and spine morphology impairment on hippocampal CA1 pyramidal neurons. Neurochem J. 2020;14(1):77-89. CrossRef
  41. Cho K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci. 2001;4(6):567-568. PubMed, CrossRef
  42. Zhang F, Li W, Li H, Gao S, Sweeney JA, Jia Z, Gong Q. The effect of jet lag on the human brain: A neuroimaging study. Hum Brain Mapp. 2020;41(9):2281-2291. PubMed, PubMedCentral, CrossRef
  43. Hosseinmardi L, Shiravi A, Meftahi GH, Afarinesh MR. Inactivation of β1-adrenergic receptor in the basolateral amygdala nucleus attenuated anxiety-like behaviour in response to foot-shock stress in the male rat. Physiol Pharmacol. 2019;23(2):101-114.
  44. Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Eur Arch Psychiatry Clin Neurosci. 2007;257(5):250-260. PubMed, CrossRef
  45. Mathew GM, Hale L, Chang AM. Sex Moderates Relationships Among School Night Sleep Duration, Social Jetlag, and Depressive Symptoms in Adolescents. J Biol Rhythms. 2019;34(2):205-217. PubMed, PubMedCentral, CrossRef
  46. Norbury R. Chronotype, depression and hippocampal volume: cross-sectional associations from the UK Biobank. Chronobiol Int. 2019;36(5):709-716.
    PubMed, CrossRef
  47. Le-Niculescu H, Roseberry K, Levey DF, Rogers J, Kosary K, Prabha S, Jones T, Judd S, McCormick MA, Wessel AR, Williams A, Phalen PL, Mamdani F, Sequeira A, Kurian SM, Niculescu AB. Towards precision medicine for stress disorders: diagnostic biomarkers and targeted drugs. Mol Psychiatry. 2020;25(5):918-938. PubMed, PubMedCentral, CrossRef
  48. Khan S, Malik BH, Gupta D, Rutkofsky I. The Role of Circadian Misalignment due to Insomnia, Lack of Sleep, and Shift Work in Increasing the Risk of Cardiac Diseases: A Systematic Review. Cureus. 2020;12(1):e6616. PubMed, PubMedCentral, CrossRef
  49. Mota MC, Silva CM, Balieiro LCT, Gonçalves BF, Fahmy WM, Crispim CA. Association between social jetlag food consumption and meal times in patients with obesity-related chronic diseases. PLoS One. 2019;14(2):e0212126. PubMed, PubMedCentral, CrossRef
  50. Wong PM, Hasler BP, Kamarck TW, Muldoon MF, Manuck SB. Social Jetlag, Chronotype, and Cardiometabolic Risk. J Clin Endocrinol Metab. 2015;100(12):4612-4620. PubMed, PubMedCentral, CrossRef
  51. Taguchi A, Ohta Y, Tanizawa Y. Molecular clock as a regulator of β-cell function. J Diabetes Investig. 2018;9(3):453-456. PubMed, PubMedCentral, CrossRef
  52. Dobson AP, Pimm SL, Hannah L, Kaufman L, Ahumada JA, Ando AW, Bernstein A, Busch J, Daszak P, Engelmann J, Kinnaird MF, Li BV, Loch-Temzelides T, Lovejoy T, Nowak K, Roehrdanz PR, Vale MM. Ecology and economics for pandemic prevention. Science. 2020;369(6502):379-381. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.