Ukr.Biochem.J. 2023; Volume 95, Issue 2, Mar-Apr, pp. 33-47

doi: https://doi.org/10.15407/ubj95.02.033

Vitamin D(3) and methylenebisphosphonic acid in the correction of mineral metabolism disorders and bone remodeling associated with glucocorticoid-induced osteoporosis

O. O. Lisakovska1*, I. O. Shymanskyi1, V. M. Vasylevska1,
E. P. Pasichna1, M. M. Veliky1, S. V. Komisarenko2

1Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry,
National Academy of Sciences of Ukraine, Kyiv;
2Department of Molecular Immunology, Palladin Institute of Biochemistry,
National Academy of Sciences of Ukraine, Kyiv;
*e-mail: o.lisakovskaya@gmail.com

Received: 03 April 2023; Revised: 27 April 2023;
Accepted: 05 June 2023; Available on-line: 20 June 2023

The study was aimed at evaluating therapeutic efficacy of vitamin D3 (VD3, 1000 IU/kg of b.w., 30 days) and sodium salt of methylenebisphosphonic acid (MBPA, 17 mg/kg of b.w., 30 days) monotherapies as well as their effect in combination in preventing mineral metabolism and bone remodeling disturbances associated with glucocorticoid(GC)-induced osteoporosis. Osteoporosis in rats was induced by long-term (30 days) administration of the synthetic glucocorticoid prednisolone (5 mg/kg of b.w.). Calcium and inorganic phosphate levels, the activity of alkaline phosphatase (ALP) in serum, bone tissue and bone marrow were determined spectrophotometrically. The protein levels of VD3 receptor (VDR), receptor activator of nuclear factor kappa-B (RANK), its ligand (RANKL), and osteoprotegerin (OPG) in bone tissue were determined by Western blotting. Serum 25-hydroxyvitamin D3 (25OHD3) content was assayed by ELISA. It was shown that prednisolone caused the development of hypocalcemia and hypophosphatemia, increased the alkaline phosphatase activity in the blood serum, while downregulating its activity in bone tissue and bone marrow. GC-induced osteoporosis was accompanied by a profound deficiency of VD3 and a decrease in the content of VDR. Evaluation of the NF-κB-associated cytokine axis RANK/RANKL/OPG, which regulates the balance of osteoblasts/osteoclasts, showed a simultaneous decrease in the RANK content and OPG/RANKL ratio. Vitamin D3 restored mineral metabolism and 25OHD3 level that led to the normalization of VDR-mediated signaling­ and RANK/RANKL/OPG functions in bone tissue. It has been shown that the administration of MBPA had a corrective effect on the content of mineral components in the blood serum and bone tissue, as well as on the activity­ of alkaline phosphatase only in combination with vitamin D3, indicating a low efficiency of bisphosphonate monotherapy in GC-induced vitamin D3 deficiency and osteoporosis.

Keywords: , , , ,


References:

  1. Cheng CH, Chen LR, Chen KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci. 2022;23(3):1376. PubMed, PubMedCentral, CrossRef
  2. Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature. 2020;582(7813):469. PubMed, CrossRef
  3. Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457-465. PubMed, CrossRef
  4. Hu K, Adachi JD. Glucocorticoid induced osteoporosis. Expert Rev Endocrinol Metab. 2019;14(4):259-266. PubMed, CrossRef
  5. Xi L, Song Y, Wu W, Qu Z, Wen J, Liao B, Tao R, Ge J, Fang D. Investigation of bone matrix composition, architecture and mechanical properties reflect structure-function relationship of cortical bone in glucocorticoid induced osteoporosis. Bone. 2020;136:115334. PubMed, CrossRef
  6. Komori T. Glucocorticoid Signaling and Bone Biology. Horm Metab Res. 2016;48(11):755-763. PubMed, CrossRef
  7. Lisakovska O, Shymanskyi I, Labudzynskyi D, Mazanova A, Veliky M. Vitamin D Auto-/Paracrine System Is Involved in Modulation of Glucocorticoid-Induced Changes in Angiogenesis/Bone Remodeling Coupling. Int J Endocrinol. 2020;2020:8237610. PubMed, PubMedCentral, CrossRef
  8. Beier EE, Sheu TJ, Resseguie EA, Takahata M, Awad HA, Cory-Slechta DA, Puzas JE. Sclerostin activity plays a key role in the negative effect of glucocorticoid signaling on osteoblast function in mice. Bone Res. 2017;5:17013. PubMed, PubMedCentral, CrossRef
  9. Tripathi AK, Rai D, Kothari P, Kushwaha P, Sashidhara KV, Trivedi R. Benzofuran pyran hybrid prevents glucocorticoid induced osteoporosis in mice via modulation of canonical Wnt/β-catenin signaling. Apoptosis. 2022;27(1-2):90-111. PubMed, PubMedCentral, CrossRef
  10. Shymanskyi I, Lisakovska O, Mazanova A, Labudzynskyi D, Veliky M. Vitamin D3 Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone. Front Endocrinol (Lausanne). 2018;9:303. PubMed, PubMedCentral, CrossRef
  11. Zhou X, Zhang Z, Jiang W, Hu M, Meng Y, Li W, Zhou X, Wang C. Naringenin is a Potential Anabolic Treatment for Bone Loss by Modulating Osteogenesis, Osteoclastogenesis, and Macrophage Polarization. Front Pharmacol. 2022;13:872188. PubMed, PubMedCentral, CrossRef
  12. Hsu E, Nanes M. Advances in treatment of glucocorticoid-induced osteoporosis. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):411-417. PubMed, PubMedCentral, CrossRef
  13. Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2-19. PubMed, CrossRef
  14. Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34-41.
    PubMed, CrossRef
  15. Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RG.
    Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone. 2022;156:116289. PubMed, CrossRef
  16. McKenna CE, Haratipour P, Duro MV, Ebetino FH. Chemistry of Bisphosphonates. In: Encyclopedia of Bone Biology. Ed. Mone Zaidi. Academic Press, 2020. P. 551-564. CrossRef
  17. Borojević A, Jauković A, Kukolj T, Mojsilović S, Obradović H, Trivanović D, Živanović M, Zečević Ž, Simić M, Gobeljić B, Vujić D, Bugarski D. Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling. Biomolecules. 2022;12(2):323. PubMed, PubMedCentral, CrossRef
  18. Bikle DD. Vitamin D: Newer Concepts of Its Metabolism and Function at the Basic and Clinical Level. J Endocr Soc. 2020;4(2):bvz038. PubMed, PubMedCentral, CrossRef
  19. Young K, Beggs MR, Grimbly C, Alexander RT. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp Biol Med (Maywood). 2022;247(13):1103-1111. PubMed, PubMedCentral, CrossRef
  20. Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D Binding Protein: A Historic Overview. Front Endocrinol (Lausanne). 2020;10:910. PubMed, PubMedCentral, CrossRef
  21. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96(1):365-408. PubMed, PubMedCentral, CrossRef
  22. Dyce BJ, Bessman SP. A rapid nonenzymatic assay for 2,3-DPG in multiple specimens of blood. Arch Environ Health. 1973;27(2):112-115. PubMed, CrossRef
  23. Veklich TO, Nikonishyna YuV, Kosterin SO. Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus. Ukr Biochem J. 2018; 90(4): 5-24. CrossRef
  24. Yukalo VG, Storozh LA. Isolation of κ-CN-1P and β-CN-5Р fractions from native casein micelles. Ukr Biochem J. 2018; 90(4): 74-79. CrossRef
  25. Chavez-Abiega S, Mos I, Centeno PP, Elajnaf T, Schlattl W, Ward DT, Goedhart J, Kallay E. Sensing Extracellular Calcium – An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). Adv Exp Med Biol. 2020;1131:1031-1063. PubMed, CrossRef
  26. Fleet JC. Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients. 2022;14(16):3351. PubMed, PubMedCentral, CrossRef
  27. Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754:144855. PubMed, CrossRef
  28. Zhang Z, Nam HK, Crouch S, Hatch NE. Tissue Nonspecific Alkaline Phosphatase Function in Bone and Muscle Progenitor Cells: Control of Mitochondrial Respiration and ATP Production. Int J Mol Sci. 2021;22(3):1140. PubMed, PubMedCentral, CrossRef
  29. Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David J, Reichardt HM, Amling M, Schütz G, Tuckermann JP. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010;11(6):517-531. PubMed, CrossRef
  30. Millán JL, Whyte MP. Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int. 2016;98(4):398-416. PubMed, PubMedCentral, CrossRef
  31. Tański W, Kosiorowska J, Szymańska-Chabowska A. Osteoporosis – risk factors, pharmaceutical and non-pharmaceutical treatment. Eur Rev Med Pharmacol Sci. 2021;25(9):3557-3566. PubMed, CrossRef
  32. Povoroznyuk VV, Pekhnyo VI, Grygorieva NV, Kozachkova OM, Tsaryk NV. Effecasy of bisphosphonic acids in female rats with experimental osteoporosis. Fiziol. Zh. 2017;63(4):80-86. CrossRef
  33. Mazanova A, Shymanskyi I, Lisakovska O, Hajiyeva L, Komisarenko Y, Veliky M. Effects of Cholecalciferol on Key Components of Vitamin D-Endo/Para/Autocrine System in Experimental Type 1 Diabetes. Int J Endocrinol. 2018;2018:2494016. PubMed, PubMedCentral, CrossRef
  34. Shymanskyy IO, Khomenko AV, Lisakovska OO, Labudzynskyi DO, Apukhovska LI, Veliky MM. The ROS-generating and antioxidant systems in the liver of rats treated with prednisolone and vitamin D3. Ukr Biochem J. 2014;86(5):111-125. (In Ukrainian). PubMed, CrossRef
  35. Lisakovska OO, Shymanskyy IO, Mazanova AO, Khomenko AV, Veliky MM. Vitamin D3 protects against prednisolone-induced liver injury associated with the impairment of the hepatic NF-κB/iNOS/NO pathway. Biochem Cell Biol. 2017;95(2):213-222. PubMed, CrossRef
  36. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96(1):365-408. PubMed, PubMedCentral, CrossRef
  37. Zarei A, Morovat A, Javaid K, Brown CP. Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts. Bone Res. 2016;4:16030. PubMed, PubMedCentral, CrossRef
  38. Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep. 2015;11(5):3212-3218. PubMed, CrossRef
  39. Huang XL, Liu C, Shi XM, Cheng YT, Zhou Q, Li JP, Liao J. Zoledronic acid inhibits osteoclastogenesis and bone resorptive function by suppressing RANKL‑mediated NF‑κB and JNK and their downstream signalling pathways. Mol Med Rep. 2022;25(2):59. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.