Ukr.Biochem.J. 2023; Volume 95, Issue 4, Jul-Aug, pp. 10-16

doi: https://doi.org/10.15407/ubj95.04.010

Ser-Thr phosphatases in the rat brain that dephosphorylate phospho-Ser(1291)-GluN2A subunit of glutamate receptor

R. R. Prabhu1,2

1P. G. Department of Biotechnology, Government Arts College, Thycaud P. O, Trivandrum, India;
2Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P. O, Trivandrum, India;
e-mail: ramyarprabhu@gmail.com

Received: 04 June 2023; Revised: 06 July 2023;
Accepted: 07 September 2023; Available on-line: 12 September 2023

N-methyl-D-aspartate receptors (NMDARs), are one of the major ionotropic glutamate receptors found in excitatory synapses which play a key role in glutamatergic synaptic transmission. The receptors are regulated by post translational modifications such as phosphorylation. One of the major receptor subunits is GluN2A which is likely to get phosphorylated in vitro at a putative site Ser1291. However, the regulation of phosphorylation of this site by kinases and phosphatases is not yet completely understood. In the present study, we have used the fusion constructs of GluN2A tagged with glutathione S-transferase (GST) as substrate for phosphorylation, purified calcium/calmodulin dependent protein kinase type II (CaMKII) and radioactive P32. We demonstrated that the site phosphorylated by αCaMKII on GluN2A was Ser1291 and that protein phosphatases 1, 2A and 2C were able to dephosphorylate this phospho-GST-GluN2A-Ser1291 in vitro. In the rat brain tissue post synaptic density and cytosolic fraction the major phosphatase responsible for dephosphorylating phospho-GluN2A-Ser1291 was protein phosphatase 1.

Keywords: , , , , ,


References:

  1. Cercato MC, Vázquez CA, Kornisiuk E, Aguirre AI, Colettis N, Snitcofsky M, Jerusalinsky DA, Baez MV. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat. Front Behav Neurosci. 2017;10:242. PubMed, PubMedCentral, CrossRef
  2. Shipton OA, Paulsen O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci. 2013;369(1633):20130163. PubMed, PubMedCentral, CrossRef
  3. Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun. 2021;12(1):4709.
    PubMed, PubMedCentral, CrossRef
  4. Wang CC, Held RG, Chang SC, Yang L, Delpire E, Ghosh A, Hall BJ. A critical role for GluN2B-containing NMDA receptors in cortical development and function. Neuron. 2011;72(5):789-805. PubMed, CrossRef
  5. Kellermayer B, Ferreira JS, Dupuis J, Levet F, Grillo-Bosch D, Bard L, Linares-Loyez J, Bouchet D, Choquet D, Rusakov DA, Bon P, Sibarita JB, Cognet L, Sainlos M, Carvalho AL, Groc L. Differential Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses. Neuron. 2018;100(1):106-119. PubMed, CrossRef
  6. Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 2013;19(1):62-75. PubMed, PubMedCentral, CrossRef
  7. Chen BS, Roche KW. Regulation of NMDA receptors by phosphorylation. Neuropharmacology. 2007;53(3):362-368. PubMed, PubMedCentral, CrossRef
  8. Khan R, Kulasiri D, Samarasinghe S. Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders. Neural Regen Res. 2021;16(6):1150-1157. PubMed, PubMedCentral, CrossRef
  9. Franchini L, Carrano N, Di Luca M, Gardoni F. Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci. 2020;21(4):1538. PubMed, PubMedCentral, CrossRef
  10. Tavalin SJ, Colbran RJ. CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner. Mol Cell Neurosci. 2017;79:45-52. PubMed, PubMedCentral, CrossRef
  11. Ramya RP, Priya SS, Mayadevi M, Omkumar RV. Regulation of phosphorylation at Ser(1303) of GluN2B receptor in the postsynaptic density. Neurochem Int. 2012;61(7):981-985. PubMed, CrossRef
  12. Gardoni F, Schrama LH, Van Dalen JJ, Gispen WH, Cattabeni F, Di Luca M. αCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett. 1999;456(3):394-398. PubMed, CrossRef
  13. Wang JQ, Guo ML, Jin DZ, Xue B, Fibuch EE, Mao LM. Roles of subunit phosphorylation in regulating glutamate receptor function. Eur J Pharmacol. 2014;728:183-187. PubMed, PubMedCentral, CrossRef
  14. Vieira M, Yong XL, Roche KW, Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. Neurochem. 2020;154(2):121-143. PubMed, PubMedCentral, CrossRef
  15. Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci. 2022;23(19):11392. PubMed, PubMedCentral, CrossRef
  16. Praseeda M, Pradeep KK, Krupa A, Krishna SS, Leena S, Kumar RR, Cheriyan J, Mayadevi M, Srinivasan N, Omkumar RV. Influence of a mutation in the ATP-binding region of Ca2+/calmodulin-dependent protein kinase II on its interaction with peptide substrates. Biochem J. 2004;378(Pt 2):391-397. PubMed, PubMedCentral, CrossRef
  17. Raveendran R, Devi Suma Priya S, Mayadevi M, Steephan M, Santhoshkumar TR, Cheriyan J, Sanalkumar R, Pradeep KK, James J, Omkumar RV. Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II. J Neurochem. 2009;110(1):92-105. PubMed, CrossRef
  18. Saraf J, Bhattacharya P, Kalia K, Borah A, Sarmah D, Kaur H, Dave KR, Yavagal DR. A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Cent Sci. 2018;4(7):805-819. PubMed, PubMedCentral, CrossRef
  19. Camp CR, Shapiro L, Vlachos A, Perszyk RE, Shariatzadeh N, White J, Sanchez R, Koh S, Escayg A, Yuan H, McBain CJ, Pelkey KA, Traynelis SF. The GluN2A Subunit of the NMDA Receptor Modulates the Rate of Functional Maturation in Parvalbumin-positive Interneurons. bioRxiv. 2021; 2021-12.
    CrossRef
  20. Zhang XM, Luo JH. GluN2A versus GluN2B: twins, but quite different. Neurosci Bull. 2013;29(6):761-772. PubMed, PubMedCentral, CrossRef
  21. Wong JM, Gray JA. Long-Term Depression Is Independent of GluN2 Subunit Composition. J Neurosci. 2018;38(19):4462-4470. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.