Ukr.Biochem.J. 2023; Volume 95, Issue 6, Nov-Dec, pp. 21-29

doi: https://doi.org/10.15407/ubj95.06.021

Benzodiazepine receptor agonist carbacetam modulates the level of vascular endothelial growth factor in the retina of rats with streptozotocin-induced diabetes

S. V. Ziablitsev1*, D. B. Zhupan1, A. O. Tykhomyrov2, O. O. Dyadyk3

1Bogomolets National Medical University, Kyiv, Ukraine;
2Palladin Institute of Biochemistry, National Academy
of Sciences of Ukraine, Kyiv, Ukraine;
3Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine;
*e-mail: zsv1965@gmail.com

Received: 07 September 2023; Revised: 19 October 2023;
Accepted: 01 December 2023; Available on-line: 18 December 2023

One of the primary mechanisms of retinal neurodegeneration in diabetes mellitus is gamma-aminobutyric acid (GABA) deficiency that makes the use of GABA-benzodiazepine receptor modulators a promising option for the correction of this diabetic complication. The aim of this study was to determine the effect of the benzodiazepine receptor agonist carbacetam on the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in retina of rats with hyperglycemia. Experimental diabetes was modeled by a single administration of streptozotocin (50 mg/kg) to three-month-old male Wistar rats. Immunoblotting and immunohistochemical studies were performed using monoclonal antibodies against VEGF and HIF-1α. It was shown that the development of diabetic retinopathy (DR) at the early stages was accompanied by a progressive multifold increase in the retina content of VEGF on 7-28 days and HIF-1α on 28th day. Insulin and insulin+carbacetam treatment significantly alleviated diabetes-induced overexpression of both HIF-1α and VEGF. Carbacetam was shown to block the diabetogenic increase in VEGF content in retina. The introduction of insulin with carbacetam significantly reduced the expression of VEGF and the development of specific morphological manifestations of DR. Thus, restoration of GABA-ergic signaling can be used as a promising therapeutic option for the correction of DR disorders.

Keywords: , , , , ,


References:

  1. Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 2021;17(4):195-206. PubMed, PubMedCentral, CrossRef
  2. Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular Unit: A New Target for Treating Early Stages of Diabetic Retinopathy. Pharmaceutics. 2021;13(8):1320. PubMed, PubMedCentral, CrossRef
  3. Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci. 2018;19(6):1816. PubMed, PubMedCentral, CrossRef
  4. Potente M, Carmeliet P. The Link Between Angiogenesis and Endothelial Metabolism. Annu Rev Physiol. 2017:79:43-66. PubMed, CrossRef
  5. Wong TY, Cheung CM, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016:2:16012. PubMed, CrossRef
  6. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2(14):e93751. PubMed, PubMedCentral, CrossRef
  7. Usui Y, Westenskow PD, Murinello S, Dorrell MI, Scheppke L, Bucher F, Sakimoto S, Paris LP, Aguilar E, Friedlander M. Angiogenesis and Eye Disease. Annu Rev Vis Sci. 2015;1:155-184. PubMed, CrossRef
  8. Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, Garmager A, Wit F, Kucukevcilioglu M, van Velthoven MEJ, DeVries JH, Mullins RF, Kuehn MH, Schlingemann RO, Sonka M, Verbraak FD, Abràmoff MD. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016;113(19):E2655-E2664. PubMed, PubMedCentral, CrossRef
  9. Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, Gardiner TA, Lyons TJ, Hammes HP, Simó R, Lois N. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156-186. PubMed, CrossRef
  10. Simó R, Hernández C, Porta M, Bandello F, Grauslund, J, Harding SP, Aldington SJ, Egan C, Frydkjaer-Olsen U, García-Arumí J, Gibson J, Lang GE, Lattanzio R, Massin P, Midena E, Ponsati B, Ribeiro L, Scanlon P, Lobo C, Costa MÂ, Cunha-Vaz J. Effects of Topically Administered Neuroprotective Drugs in Early Stages of Diabetic Retinopathy: Results of the EUROCONDOR Clinical Trial. Diabetes. 2019;68(2):457-463. PubMed, CrossRef
  11. Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, Marcus DM, Martin DF, Melia M, Salehi-Had H, Stockdale CR, Punjabi OS, Sun JK. Effect of Intravitreous Anti-Vascular Endothelial Growth Factor vs Sham Treatment for Prevention of Vision-Threatening Complications of Diabetic Retinopathy: The Protocol W Randomized Clinical Trial. JAMA Ophthalmol. 2021;139(7):701-712. PubMed, PubMedCentral, CrossRef
  12. Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61(9):1902-1912. PubMed, PubMedCentral, CrossRef
  13. Eggers ED. Visual Dysfunction in Diabetes. Annu Rev Vis Sci. 2023;9:91-109. PubMed, CrossRef
  14. Ali SA, Zaitone SA, Dessouki AA, Ali AA. Pregabalin affords retinal neuroprotection in diabetic rats: Suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Exp Eye Res. 2019;184:78-90. PubMed, CrossRef
  15. Ziablitsev SV, Starodubska OO, Diadyk OO. Influence of carbacetam on neurologic destruction processes under the experimental traumatic brain injury. J Educ Health Sport. 2017;7(2):601-611.
  16. Kmet OG, Ziablitsev SV, Filipets ND, Kmet TI, Slobodian XV. Carbacetam effect on behavioral reactions in experimental Alzheimer’s disease. Arch Balk Med Union. 2019;54(1):124-129. CrossRef
  17. Kmet OG, Ziablitsev SV, Filipets ND. Peculiarities of the antioxidant protection and nitrogen oxide systems of the brain in ratswith experimental type 2 diabetes mellitus after carbacetam administration. Int J Endocrinol. 2019;15(5):376-380. (In Ukrainian). CrossRef
  18. Dabbs D. Diagnostic Immunohistochemistry, 4th Edition Theranostic and genomic applications. 2014. 960 p.
  19. Proia AD, Caldwell MC. Intraretinal neovascularization in diabetic retinopathy. Arch Ophthalmol. 2010;128(1):142-144. PubMed, CrossRef
  20. Wu D, Kanda A, Liu Y, Noda K, Murata M, Ishida S. Involvement of Müller Glial Autoinduction of TGF-β in Diabetic Fibrovascular Proliferation Via Glial-Mesenchymal Transition. Invest Ophthalmol Vis Sci. 2020;61(14):29. PubMed, PubMedCentral, CrossRef
  21. Arboleda-Velasquez JF, Valdez CN, Marko CK, D’Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep. 2015;15(2):573. PubMed, PubMedCentral, CrossRef
  22. Choi SB, Park JB, Song TJ, Choi SY. Molecular mechanism of HIF-1-independent VEGF expression in a hepatocellular carcinoma cell line. Int J Mol Med. 2011;28(3):449-454. PubMed, CrossRef
  23. Chang KC, Shieh B, Petrash JM. Role of aldose reductase in diabetes-induced retinal microglia activation. Chem Biol Interact. 2019:302:46-52.
    PubMed, PubMedCentral, CrossRef
  24. Sundstrom JM, Hernández C, Weber SR, Zhao Y, Dunklebarger M, Tiberti N, Laremore T, Simó-Servat O, Garcia-Ramirez M, Barber AJ, Gardner TW, Simó R. Proteomic Analysis of Early Diabetic Retinopathy Reveals Mediators of Neurodegenerative Brain Diseases. Invest Ophthalmol Vis Sci. 2018;59(6):2264-2274. PubMed, PubMedCentral, CrossRef
  25. Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des. 2007;13(26):2699-2712. PubMed, CrossRef
  26. Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017:139:101-107. PubMed, PubMedCentral, CrossRef
  27. Eggers ED, Carreon TA. The effects of early diabetes on inner retinal neurons. Vis Neurosci. 2020:37:E006. PubMed, PubMedCentral, CrossRef
  28. Castilho Á, Ambrósio AF, Hartveit E, Veruki ML. Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci. 2015;35(13):5422-5433. PubMed, PubMedCentral, CrossRef
  29. Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE. Benzodiazepines in Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology. 2023;31(1):221-230. PubMed, CrossRef
  30. Tykhonenko T, Guzyk M, Tykhomyrov A, Korsa V, Yanitska L, Kuchmerovska T. Modulatory effects of vitamin B3 and its derivative on the levels of apoptotic and vascular regulators and cytoskeletal proteins in diabetic rat brain as signs of neuroprotection. Biochim Biophys Acta Gen Subj. 2022;1866(11):130207. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.