Ukr.Biochem.J. 2024; Volume 96, Issue 3, May-Jun, pp. 5-12

doi: https://doi.org/10.15407/ubj96.03.005

ATP as a signaling molecule

L. G. Babich*, S. G. Shlykov, S. O. Kosterin

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: babich@biochem.kiev.ua

Received: 22 January 2024; Revised: 13 February 2024;
Accepted: 31 May 2024; Available on-line: 17 June 2024

The review considers the effects of extracellular ATP mediated by plasma membrane purinoreceptors in the cells of different tissues, in particular, myometrium. Recently published results suggest that cytosolic ATP may also play a role of signaling molecule, as indicated by the detection of the ATP receptor not only in the plasma membrane, but also in mitochondria. The authors have shown that ionized Ca2+ concentration in the rat myometrium mitochondria matrix is regulated by ATP at the absence of exogenous Ca2+. ATP concentration-dependent increase of [Ca2+]m was not affected in the presence of the mitochondrial Ca2+-uniporter blocker ruthenium red, the mitochondrial pore blocker cyclosporine A, or ATP synthase inhibitor oligomycin. It is assumed that cytosolic ATP could be a signaling molecule that regulates at least the Ca2+ ions exchange in mitochondria.

Keywords: , , ,


References:

  1. Rich P. Chemiosmotic coupling: The cost of living. Nature. 2003;421(6923):583. PubMed, CrossRef
  2. Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci. 2007;64(23):3069-3083. PubMed, CrossRef
  3. Acin-Perez R, Benincá C, Fernandez Del Rio L, Shu C, Baghdasarian S, Zanette V, Gerle C, Jiko C, Khairallah R, Khan S, Rincon Fernandez Pacheco D, Shabane B, Erion K, Masand R, Dugar S, Ghenoiu C, Schreiner G, Stiles L, Liesa M, Shirihai OS. Inhibition of ATP synthase reverse activity restores energy homeostasis in mitochondrial pathologies. EMBO J. 2023;42(10):e111699. PubMed, PubMedCentral, CrossRef
  4. Burnstock G. Purinergic signalling: from discovery to current developments. Exp Physiol. 2014;99(1):16-34. PubMed, PubMedCentral, CrossRef
  5. Sarti AC, Vultaggio-Poma V, Falzoni S, Missiroli S, Giuliani AL, Boldrini P, Bonora M, Faita F, Di Lascio N, Kusmic C, Solini A, Novello S, Morari M, Rossato M, Wieckowski MR, Giorgi C, Pinton P, Di Virgilio F. Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. Function (Oxf). 2021;2(2):zqab005. PubMed, PubMedCentral, CrossRef
  6. Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm. 2023;4(5):e359.
    PubMed, PubMedCentral, CrossRef
  7. Burnstock G, Campbell G, Satchell D, Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970;40(4):668-688. PubMed, PubMedCentral, CrossRef
  8. Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F. Signalling by extracellular nucleotides in health and disease. Biochim Biophys Acta Mol Cell Res. 2022;1869(5):119237. PubMed, CrossRef
  9. Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology. 2023;222:109303. PubMed, CrossRef
  10. Ronning KE, Déchelle-Marquet PA, Che Y, Guillonneau X, Sennlaub F, Delarasse C. The P2X7 Receptor, a Multifaceted Receptor in Alzheimer’s Disease. Int J Mol Sci. 2023;24(14):11747. PubMed, PubMedCentral, CrossRef
  11. Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev. 2006;58(1):58-86. PubMed, CrossRef
  12. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47(1):15-31. PubMed, CrossRef
  13. Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016;104:31-49. PubMed, PubMedCentral, CrossRef
  14. Liu JP, Liu SC, Hu SQ, Lu JF, Wu CL, Hu DX, Zhang WJ. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother. 2023;158:114205. PubMed, CrossRef
  15. Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel). 2022;14(5):1116. PubMed, PubMedCentral, CrossRef
  16. Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal. 2021;17(1):151-162. PubMed, PubMedCentral, CrossRef
  17. Penolazzi L, Notarangelo MP, Lambertini E, Vultaggio-Poma V, Tarantini M, Di Virgilio F, Piva R. Unorthodox localization of P2X7 receptor in subcellular compartments of skeletal system cells. Front Cell Dev Biol. 2023;11:1180774. PubMed, PubMedCentral, CrossRef
  18. Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR. Cytolytic P2X purinoceptors. Cell Death Differ. 1998;5(3):191-199. PubMed, CrossRef
  19. Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, Di Virgilio F. Increased proliferation rate of lymphoid cells transfected with the P2X(7) ATP receptor. J Biol Chem. 1999;274(47):33206-33208. PubMed, CrossRef
  20. Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol. 2020;11:793. PubMed, PubMedCentral, CrossRef
  21. Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. The Coming of Age of the P2X7 Receptor in Diagnostic Medicine. Int J Mol Sci. 2023;24(11):9465. PubMed, PubMedCentral, CrossRef
  22. Zabłocki K, Górecki DC. The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies. Int J Mol Sci. 2023;24(11):9434. PubMed, PubMedCentral, CrossRef
  23. Sanborn BM, Ku CY, Shlykov S, Babich L. Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig. 2005;12(7):479-487. PubMed, CrossRef
  24. Thorneloe KS, Nelson MT. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol. 2005;83(3):215-242. PubMed, CrossRef
  25. Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal. 2014;10(1):157-187. PubMed, PubMedCentral, CrossRef
  26. Takahara N, Ito S, Furuya K, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2014;51(6):772-782. PubMed, CrossRef
  27. Bodin P, Burnstock G. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol. 2001;38(6):900-908. PubMed, CrossRef
  28. Alotaibi M. Changes in expression of P2X7 receptors in rat myometrium at different gestational stages and the mechanism of ATP-induced uterine contraction. Life Sci. 2018;199:151-157. PubMed, CrossRef
  29. Miyoshi H, Yamaoka K, Urabe S, Kodama M, Kudo Y. Functional expression of purinergic P2X7 receptors in pregnant rat myometrium. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R1117-R1124. PubMed, CrossRef
  30. Miyoshi H, Yamaoka K, Urabe S, Kudo Y. ATP-induced currents carried through P2X7 receptor in rat myometrial cells. Reprod Sci. 2012;19(12):1285-1291. PubMed, CrossRef
  31. Urabe S, Miyoshi H, Fujiwara H, Yamaoka K, Kudo Y. Enhanced expression of P2X4 and P2X7 purinergic receptors in the myometrium of pregnant rats in preterm delivery models. Reprod Sci. 2009;16(12):1186-1192. PubMed, CrossRef
  32. Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine. 2021;37:102422. PubMed, CrossRef
  33. Ferrari D, Los M, Bauer MKA, Vandenabeele P, Wesselborg S, Schulze-Osthoff K. P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett. 1999;447(1):71-75. PubMed, CrossRef
  34. Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, Di Virgilio F. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell. 2005;16(7):3260-3272. PubMed, PubMedCentral, CrossRef
  35. Giacovazzo G, Fabbrizio P, Apolloni S, Coccurello R, Volonté C. Stimulation of P2X7 Enhances Whole Body Energy Metabolism in Mice. Front Cell Neurosci. 2019;13:390. PubMed, PubMedCentral, CrossRef
  36. Missiroli S, Perrone M, Gafà R, Nicoli F, Bonora M, Morciano G, Boncompagni C, Marchi S, Lebiedzinska-Arciszewska M, Vezzani B, Lanza G, Kricek F, Borghi A, Fiorica F, Ito K, Wieckowski MR, Di Virgilio F, Abelli L, Pinton P, Giorgi C. PML at mitochondria-associated membranes governs a trimeric complex with NLRP3 and P2X7R that modulates the tumor immune microenvironment. Cell Death Differ. 2023;30(2):429-441. PubMed, PubMedCentral, CrossRef
  37. Sylenko AV, Shlykov SG, Babich LG, Chunikhin OYu, Kosterin SO. Regulation of ionized calcium concentration in mitochondria matrix in the absence of exogenous Са2+. Ukr Biochem J. 2021;93(3):5-12. CrossRef
  38. Babich LG, Shlykov SG, Bavelska-Somak AO, Zagoruiko AG, Horid’ko TM, Kosiakova HV, Hula NM, Kosterin SO. Extramitochondrial ATP as [Ca2+]m and cardiolipin content regulator. Biochim Biophys Acta Biomembr. 2023;1865(8):184213. PubMed, CrossRef
  39. Babich LG, Shlykov SG, Kushnarova-Vakal AM, Kupynyak NI, Manko VV, Fomin VP, Kosterin SO. The relationship between the ionized Ca concentration and mitochondrial functions. Ukr Biochem J. 2018; 90(3):32-40. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.