Ukr.Biochem.J. 2024; Volume 96, Issue 3, May-Jun, pp. 108-121


Kinetic regularities and a possible mechanism of ATP non-enzymatic hydrolysis induced by calix[4]arene С-107

S. O. Kosterin1*, Т. О. Veklich1, O. І. Kalchenko2,
A. I. Vovk3*, R. V. Rodik2, О. А. Shkrabak1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
3V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry,
National Academy of Sciences of Ukraine, Kyiv;

Received: 08 February 2024; Revised: 27 March 2024;
Accepted: 31 May 2024; Available on-line: 17 June 2024

The kinetic model of calix[4]arene-induced ATP hydrolysis was elaborated. It is assumed that calix[4]­arene С-107 molecules form a complex with nucleoside triphosphate, ensuring the release of inorganic phosphate Рі, and then switch into an inactive state. Inactive calix[4]arene molecules are no longer able to form a complex with ATP and, accordingly, to provide hydrolysis of nucleoside triphosphate. In the author’s experimental studies, it was possible to explain the kinetic properties of the reaction, namely: the insignificant output of the reaction end product Pi; the quantitative regularities of the plateau (time-wise) accumulation of the reaction product when the concentration of calix[4]arene C-107 or ATP changes; the reciprocal dependence of the ATP half conversion on its concentration; the correspondence of the initial reaction rate dependence on the calix[4]arene and ATP concentration to the Michaelis-Menten equation. The final decision regarding the molecular mechanism of calix[4]arene-induced ATP hydrolysis requires further experimental and theoretical studies.

Keywords: , ,


  1. Mazur IuIu, Veklich TO, Shkrabak OA, Mohart MA, Demchenko AM, Gerashchenko IV, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SO. Selective inhibition of smooth muscle plasma membrane transport Са2+,Mg2+-АТРase by calixarene C-90 and its activation by IPT-35 compound. Gen Physiol Biophys. 2018;37(2):223-231. PubMed, CrossRef
  2. Kosterin SO, Kalchenko VI, Veklich ТО, Babich LG, Shlykov SG. Calixarenes as modulators of ATP-hydrolyzing systems of smooth muscles. K.: Science opinion, 2019. 256 р.
  3. Shkrabak OA, Veklich TO, Rodik RV, Kalchenko VI, Kosterin SO. Inhibition of plasma membrane Сa2+,Mg2+-АТРase by сalixarene sulfonylamidines. Structure-activity relationship. Ukr Biochem J. 2022; 94(4):18-35. CrossRef
  4. Veklich TO, Labyntseva RD, Shkrabak OA, Tsymbaluk OV, Rodik RV, Kalchenko VI, Kosterin SO. Inhibition of Na+,K+-ATPase and activation of myosin ATPase by calix[4]arene C-107 cause stimulation of isolated smooth muscle contractile activity. Ukr Biochem J. 2020;92(1):21-30. CrossRef
  5. Veklich T.O. Inhibitory peculiarities of calix[4]arenes C-90 action on the activity of plasma membrane Ca2+,Mg2+-ATPase of smooth muscle cells. Monograph: Modern directions in chemistry, biology, pharmacy, and biotechnology. Lviv.: Lviv Polytechnic Publishing House. 2015, 200-204.
  6. Veklich ТО, Kosterin SO, Rodik RV, Cherenok SO, Boiko VI, Kalchenko VI. Effect of calixarene-phosphonic acid on Na+,K+-ATPase activity in plasma membranes of the smooth-muscle cells. Ukr Biokhim Zhurn. 2006;78(1):70-86. (In Ukrainian). PubMed
  7. Rodik R, Boiko V, Danylyuk O, Suwinska K, Tsymbal I, Slinchenko N, Babich L, Shlykov S, Kosterin S, Lipkowski J, Kalchenko V. Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+,ATP-dependent calcium pumps. Tetrahedron Lett. 2005;46(43):7459-7462. CrossRef
  8. Veklich TO, Shkrabak OA, Mazur YuYu, Rodik RV, Kalchenko VI, Kosterin SO. Kinetics of inhibitory effect of calix[4]arene С-90 on activity of transporting plasma membrane Cа2+,Mg2+-ATPase of smooth muscle cells. Ukr Biochem J. 2014;86(5):37-46. CrossRef
  9. Kalchenko VI, Rodik RV, Boyko VI. Calixarenes. Prospects for medical and biological application. J Org Pharm Chem. 2006;3(4):13-29.
  10. Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008;32:780-782. CrossRef
  11. Da Silva E, Lazar AN, Coleman AW. Biopharmaceutical applications of calixarenes. J Drug Deliv Sci Technol. 2004;14(1):3-20. CrossRef
  12. Shkrabak OA, Kalchenko OI, Rodik RV, Veklich ТО, Kalchenko VI, Kosterin SO. Calixarene-dependent hydrolysis of ATP. I. Kinetics and complexation of the calixarene C-107 with nucleoside triphosphate. Ukr Biokhim Zhurn. 2008;80(2):90-100. (In Ukrainian). PubMed
  13. Shkrabak OA, Veklich ТО, Rodik RV, Boyko VI, Kosterin SO. Calixarene-dependent hydrolysis of ATP. II. The catalytic properties of reaction stimulated by calixarene C-107. Ukr Biokhim Zhurn. 2008;80(3):55-64. (In Ukrainian). PubMed
  14. Tian-Ming Y, Zhi-Feng Y, Li W, Jin-Ying G, Si-De Y, Xian-Fa S. Supramolecular interaction between water-soluble calix[4]arene and ATP–the catalysis of calix[4]arene for hydrolysis of ATP. Spectrochim Acta A Mol Biomol Spectrosc. 2002;58(14):3033-3038. PubMed, CrossRef
  15. Lohvyn AV, Dmytrenko OP, Kulish MP, Pavlenko OL, Naumenko AP, Lesiuk AI, Veklich TO, Kanіuk MI. Spectral features of adenosine triphosphate solutions with calix[4]arene C-107. Appl Nanosci. 2023;13:4809-4815. CrossRef
  16.  Kalchenko OI, Kalchenko VI. Chromatography in the chemistry of calixarenes. Monograph. Kyiv: Naukova Dumka. 2013, 197 p. (In Ukrainian).
  17. Kalchenko OI, Lipkowski J, Kalchenko VI, Vysotsky MA, Markovsky LN. Effect of octakis(diethoxyphosphoryloxy)-tert-butyl-calix[8]arene in
    mobile phase on the reversed-phase retention behavior of aromatic compounds: host – guest complex formation and stability constants determination. J Chromatogr Sci. 1998;36(5):269-273. CrossRef
  18. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969;28(1):436-445. PubMed, CrossRef
  19. Veklich ТО, Shkrabak OA, Rodik RV, Boyko VI, Kalchenko V., Kosterin SO. Spatial structure of the calixarene-aminophosphonic acids is important for their inhibition of the Na+,K+-ATPase activity in plasma membrane of smooth muscle cells. Ukr Biokhim Zhurn. 2010;82(1):21-33. (In Ukrainian).
  20. Veklich ТО, Shkrabak OA, Rodik RV, Kalchenko VI, Kosterin SO. Effect of calixarene C-107 on kinetic parameters of Na+,K+-ATPase in the plasma membrane of the uterus myocytes. Ukr Biokhim Zhurn. 2011;83(2):36-44. (In Ukrainian). PubMed
  21. Kosterin SO, Babich LG, Shlykov SG, Danylovych IuV, Veklich ТО, Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. K.: Science opinion, 2016. 210 р.
  22. Kosterin SO., Kаrakhim SО. Biochemical kinetics. K.: Science opinion, 2021. 310 p.
  23. Cornish-Bowden Athel. Fundamentals of Enzyme Kinetics. (4 ed.). Weinheim: Wiley-Blackwell, 2012. 510 p.
  24. Fromm HJ, Hargrove MS. Enzyme Kinetics. In: Essentials of Biochemistry. Springer, Berlin, Heidelberg. 2012: 81-122. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.