Ukr.Biochem.J. 2024; Volume 96, Issue 4, Jul-Aug, pp. 95-105

doi: https://doi.org/10.15407/ubj96.04.095

NET-inducing diamond nanoparticles with adsorbed hydrophobic SARS-CoV-2 antigens serving as vaccine candidate

G. Bila, V. Vovk, V. Utka, R. Grytsko, A. Havrylyuk, V. Chopyak, R. Bilyy*

Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
*e-mail: r.bilyy@gmail.com

Received: 14 April 2024; Revised: 17 May 2024;
Accepted: 25 July 2024; Available on-line: 04 September 2024

This study addresses the current need for vaccine adjuvants able to induce an immune response to novel or mutated pathogens. It exploits the ability of nanodiamonds (ND) to induce the formation of neutrophil extracellular traps (NETs) triggering inflammation, accompanied by immune response to co-injected antigens. Hydrophobic nanodiamonds 10 nm in diameter were covered with 194 a.a. sequence of the receptor-binding domain of Spike protein of SARS-CoV-2 via passive adsorption. It was shown that antigen-covered ND induce activation of human neutrophils and stimulate NETs formation and ROS production. When used for immunization antigen-covered ND induced long-lasting immune response in mice with prevailing IgG1 among antibody subclasses. The injected nanoparticles were sequestered by NETs and safely covered with connective tissues when examined 1 year after injection.

Keywords: , , , , , , ,


References:

  1. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83-100. PubMed, PubMedCentral, CrossRef
  2. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol. 2004;82(5):497-505. PubMed, CrossRef
  3. Apostólico JdeS, Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res. 2016;2016:1459394. PubMed, PubMedCentral, CrossRef
  4. Bilyy R, Bila G, Vishchur O, Vovk V, Herrmann M. Neutrophils as Main Players of Immune Response Towards Nondegradable Nanoparticles. Nanomaterials (Basel). 2020;10(7):1273. PubMed, PubMedCentral, CrossRef
  5. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511-517. PubMed, CrossRef
  6. Biermann MHC, Podolska MJ, Knopf J, Reinwald C, Weidnerv, Maueröder C, Hahn J, Kienhöfer D, Barras A, Boukherroub R, Szunerits S, Bilyy R, Hoffmann M, Zhao Y, Schett G, Herrmann M, Munoz LE. Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation. Front Immunol. 2016;7:557. PubMed, PubMedCentral, CrossRef
  7. Desai J, Foresto-Neto O, Honarpisheh M, Steiger S, Nakazawa D, Popper B, Buhl EM, Boor P, Mulay SR, Anders HJ. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci Rep. 2017;7(1):15003. PubMed, PubMedCentral, CrossRef
  8. Bila G, Rabets A, Bilyy R. Nano- and Microparticles and Their Role in Inflammation and Immune Response: Focus on Neutrophil Extracellular Traps. In Biomedical Nanomaterials; Springer International Publishing: Cham, 2022. P. 149-170. CrossRef
  9.  Agudo-Canalejo J. Lipowsky R. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS Nano. 2015;9(4):3704-3720. PubMed, CrossRef
  10. Bilyy R. Paryzhak S, Turcheniuk K, Dumych T, Barras A, Boukherroub R, Wang F, Yushin G, Szunerits S. Aluminum oxide nanowires as safe and effective adjuvants for next-generation vaccines. Mater Today. 2019;22:58-66. CrossRef
  11. Stephen J, Scales HE, Benson RA, Erben D, Garside P, Brewer JM. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccines. 2017;2:1. PubMed, PubMedCentral, CrossRef
  12. Vaseruk A, Bila G, Bilyy R. Nanoparticles for stimulation of neutrophil extracellular trap-mediated immunity. Eur J Immunol. 2024;54(4):e2350582. PubMed, CrossRef
  13. Bilyy R, Pagneux Q, François N, Bila G, Grytsko R, Lebedin Y, Barras A, Dubuisson J, Belouzard S, Séron K, Boukherroub R, Szunerits S. Rapid Generation of Coronaviral Immunity Using Recombinant Peptide Modified Nanodiamonds. Pathogens. 2021;10(7):861. PubMed, PubMedCentral, CrossRef
  14. Bekeschus S, Winterbourn CC, Kolata J, Masur K, Hasse S, Bröker BM, Parker HA. Neutrophil extracellular trap formation is elicited in response to cold physical plasma. J Leukoc Biol. 2016;100(4):791-799. PubMed, CrossRef
  15. Allen IC. Delayed-type hypersensitivity models in mice. Methods Mol Biol. 2013;1031:101-107. PubMed, CrossRef
  16. Bila G, Schneider M, Peshkova S, Krajnik B, Besh L, Lutsyk A, Matsyura O, Bilyy R. Novel approach for discrimination of eosinophilic granulocytes and evaluation of their surface receptors in a multicolor fluorescent histological assessment. Ukr Biochem J. 2020;92(2):99-106. CrossRef
  17. Kiessig S, Abel U, Risse P, Friedrich J, Heinz F, Kunz C. Problems of cut-off level determination in enzyme immunoassays: the case of TBE-ELISA. Klin Lab. 1993;39(11):877-886.
  18. Crowther JR. The ELISA Guidebook: Second Edition (Methods in Molecular Biology). Humana Press: Totowa, NJ, 2009; Vol. 516.
  19. Biermann MHC, Boeltz S, Pieterse E, Knopf J, Rech J, Bilyy R, van der Vlag J, Tincani A, Distler JHW, Krönke G, Schett GA, Herrmann M, Muñoz LE. Autoantibodies Recognizing Secondary NEcrotic Cells Promote Neutrophilic Phagocytosis and Identify Patients With Systemic Lupus Erythematosus. Front Immunol. 2018;9:989. PubMed, PubMedCentral, CrossRef
  20. Bozhenko M, Boichuk M, Bila G, Nehrych T, Bilyy R. Freezing influences, the exposure of IgG glycans in sera from multiple sclerosis patients. Ukr Biochem J. 2020;92(2):21-31. CrossRef
  21. Brandt BW, Heringa J, Leunissen JAM. SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. Nucleic Acids Res. 2008;36(Web Server issue):W255-W259. PubMed, PubMedCentral, CrossRef
  22. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Zhao J, Wang X, Zhang Z, Zhang L. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020;584(7819):115-119. PubMed, CrossRef
  23. Rabets A, Bila G, Grytsko R, Samborskyy M, Rebets Y, Vari SG, Pagneux Q, Barras A, Boukherroub R, Szunerits S, Bilyy R. The Potential of Developing Pan-Coronaviral Antibodies to Spike Peptides in Convalescent COVID-19 Patients. Arch Immunol Ther Exp (Warsz). 2021;69(1):5. PubMed, PubMedCentral, CrossRef
  24. Muñoz LE, Bilyy R, Biermann MHC, Kienhöfer D, Maueröder C, Hahn J, Brauner JM, Weidner D, Chen J, Scharin-Mehlmann M, Janko C, Friedrich RP, Mielenz D, Dumych T, Lootsik MD, Schauer C, Schett G, Hoffmann M, Zhao Y, Herrmann M. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc Natl Acad Sci USA. 2016;113(40):E5856-E5865. PubMed, PubMedCentral, CrossRef
  25. Bila G, Vishchur O, Vovk V, Vari S, Bilyy R. Neutrophil activation at high-fat high-cholesterol and high-fructose diets induces low-grade inflammation in mice. Ukr Biochem J. 2024;96(2):27-37. CrossRef
  26. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3):254. PubMed, PubMedCentral, CrossRef
  27. Low JS, Vaqueirinho D, Mele F, Foglierini M, Jerak J, Perotti M, Jarrossay D, Jovic S, Perez L, Cacciatore R, Terrot T, Pellanda AF, Biggiogero M, Garzoni C, Ferrari P, Ceschi A, Lanzavecchia A, Sallusto F, Cassotta A. Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science. 2021;372(6548):1336-1341. PubMed, PubMedCentral, CrossRef
  28. Croia L, Boscato Sopetto G, Zanella I, Caproni E, Gagliardi A, Tamburini S, König E, Benedet M, Di Lascio G, Corbellari R, Grandi A, Tomasi M, Grandi G. Immunogenicity of Escherichia coli Outer Membrane Vesicles: Elucidation of Humoral Responses against OMV-Associated Antigens. Membranes (Basel). 2023;13(11):882. PubMed, PubMedCentral, CrossRef
  29. Demchenko AP, Dekaliuk MO. Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc. 2013;1(4):042001. PubMed, CrossRef
  30. Demchenko AP. Fluorescence Detection Techniques. Introd Fluoresc Sens. 2015:69-132. CrossRef
  31. Ghanimi Fard M, Khabir Z, Reineck P, Cordina NM, Abe H, Ohshima T, Dalal S, Gibson BC, Packer NH, Parker LM. Targeting cell surface glycans with lectin-coated fluorescent nanodiamonds. Nanoscale Adv. 2022;4(6):1551-1564. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.