Ukr.Biochem.J. 2024; Volume 96, Issue 4, Jul-Aug, pp. 79-94

doi: https://doi.org/10.15407/ubj96.04.079

Thiacalix[4]arene chalcone amides effect on myometrium contraction

O. V. Tsymbalyuk1*, S. G. Shlykov2, L. G. Babich2, О. Yu. Chunikhin2,
R. V. Rodik3, S. G. Vyshnevskyi3, O. A. Yesypenko3, S. O. Kosterin2

1Educational and Scientific Institute of High Technologies,
Taras Shevchenko National University of Kyiv, Ukraine;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
3Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: otsymbal@knu.ua

Received: 26 April 2024; Revised: 26 June 2024;
Accepted: 25 July 2024; Available on-line: 04 September 2024

Calixarenes are macrocyclic compounds, the biochemical effects of which are actively studied. In this study we synthesized thiacalix[4]arene chalcone amides С-1191 and С-1192, which have a sulfur atom in their structure and different spatial arrangement of chalcone amide groups, and studied their effect on myometrium functioning. Experiments were conducted with the use of rat uterine smooth muscles preparations, isolated myometrial mitochondria and permeabilized myometrial cells. The relative value of mitochondria membrane potential (Δψ) was assayed with a voltage-sensitive fluorescent probe TMRM. The spontaneous contractive activity was studied by tenzometric method followed by mechanokinetic analysis. It was shown that C-1191 and C-1192 induced mitochondria hyperpolarization and increased the basal tension of myometrium smooth muscle preparation. Thiacalix[4]arene С-1191 did not change the uterine cycle, but increased the force, velocity and impulse parameters of muscle  contractive activity. On the contrary, С-1192 modified the uterine cycle considerably, increased the total efficiency of the myometrium spontaneous contractive activity and decreased the force, time and impulse parameters. It is concluded that changes in the mechanokinetic parameters of myometrial contractile activity induced by С-1191 and С-1192 are determined  by  the functional activity  of mitochondria.

Keywords: , , , ,


References:

  1. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011;6(2):125-147. PubMed, PubMedCentral, CrossRef
  2. León-González AJ, Acero N, Muñoz-Mingarro D, Navarro I, Martín-Cordero C. Chalcones as promising lead compounds on cancer therapy. Curr Med Chem. 2015;22(30):3407-3425. PubMed, CrossRef
  3. Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016;148:154-172. PubMed, CrossRef
  4. Zhang S, Li T, Zhang Y, Xu H, Li Y, Zi X, Yu H, Li J, Jin CY, Liu HM. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicol Appl Pharmacol. 2016;309:77-86. PubMed, PubMedCentral, CrossRef
  5. Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med Chem (Los Angeles). 2015;5(8):388-404. PubMed, PubMedCentral, CrossRef
  6. Shlykov SG, Kushnarova-Vakal AM, Sylenko AV, Babich LG, Chunikhin ОYu, Yesypenko OA, Kalchenko VI, Kosterin SO. Сalix[4]arene chalcone amides effects on myometrium mitochondria. Ukr Biochem J. 2019;91(3):46-55. CrossRef
  7. Shlykov SG, Sylenko AV, Babich LG, Karakhim SO, Chunikhin OYu, Yesypenko O A, Kal’chenko VI, Kosterin SO. Calix[4]arene chalcone amides as effectors of mitochondria membrane polarization. Nanosistemi Nanomater Nanotehnologii. 2020;18(3):473-485. CrossRef
  8. Štastný V, Stibor I, Dvořáková H, Lhoták P. Synthesis of (thia)calix[4]arene oligomers: towards calixarene-based dendrimers. Tetrahedron. 2004;60(15):3383-3391. CrossRef
  9. Ovsyannikov AS, Lang MN, Ferlay S, Solovieva SE, Antipin IS, Konovalov AI, Kyritsakas N, Hosseini MW. Molecular tectonics: Tetracarboxythiacalix[4]arene derivatives as tectons for the formation of hydrogen-bonded networks. Cryst Eng Comm. 2016;18(44):8622-8630. CrossRef
  10. Kosterin SO, Babich LG, Shlykov SG, Danylovych YuV, Veklich ТО, Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. Kyiv. Naukova Dumka, 2016. 210 р. (In Ukrainian).
  11. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
  12. Mollard P, Mironneau J, Amedee T, Mironneau C. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. Am J Physiol. 1986;250(1 Pt 1):C47-C54. PubMed, CrossRef
  13. Merkus HG. Particle size measurements: fundamentals. Practice, Quality (Springer, 2009). 534 p.
  14. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440-3450. PubMed
  15. Tsymbalyuk OV. Modulating the mechanokinetics of spontaneous contractions of the myometrium of rats using calix[4]arene C-90 – plasma membrane calcium ATPase inhibitor. Stud Biol. 2021;15(2):3-14. CrossRef
  16. Kosterin S, Tsymbalyuk O, Holden O. Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Ser Biomech. 2021;35(1):14-30.
  17. Dodds KN, Staikopoulos V, Beckett EAH. Uterine Contractility in the Nonpregnant Mouse: Changes During the Estrous Cycle and Effects of Chloride Channel Blockade. Biol Reprod. 2015;92(6):141. PubMed, CrossRef
  18. Sukwan C, Wray S, Kupittayanant S. The effects of Ginseng Java root extract on uterine contractility in nonpregnant rats. Physiol Rep. 2014;2(12):e12230. PubMed, PubMedCentral, CrossRef
  19. Lee SE, Ahn DS, Lee YH. Role of T-type Ca2+ channels in the spontaneous phasic contraction of pregnant rat uterine smooth muscle. Korean J Physiol Pharmacol. 2009;13(3):241-249. PubMed, PubMedCentral, CrossRef
  20. Blanks AM, Zhao ZH, Shmygol A, Bru-Mercier G, Astle S, Thornton S. Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. J Physiol. 2007;581(Pt 3):915-926. PubMed, PubMedCentral, CrossRef
  21. Gravina FS, Parkington HC, Kerr KP, De Oliveira RB, Jobling P, Coleman HA, Sandow SL, Davies MM, Imtiaz MS, Van Helden DF. Role of mitochondria in contraction and pacemaking in the mouse uterus. Br J Pharmacol. 2010;161(6):1375-1390. PubMed, PubMedCentral, CrossRef
  22. Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf). 2021;231(4):e13607. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.