Ukr.Biochem.J. 2025; Volume 97, Issue 1, Jan-Feb, pp. 90-102
doi: https://doi.org/10.15407/ubj97.01.090
Isolation, characterization, and identification of cellulolytic bacteria from household compost for cellulase production
T. Q. Truong1*, K. D. Nguyen2
1Faculty of Technology and Engineering, Dong Thap University, Dong Thap, Vietnam;
2Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam;
*e-mail: tqtat@dthu.edu.vn
Received: 22 September 2024; Revised: 21 November 2024;
Accepted: 21 February 2025; Available on-line: 03 March 2025
Using microorganisms for waste treatment is a growing trend that offers numerous economic and environmental benefits. This study aimed to evaluate the characteristics of cellulolytic bacterial strains isolated from compost samples from household waste. Biochemical and molecular tests were conducted to identify highly cellulolytic bacteria. Thirty aerobic strains were isolated, of these three isolates (WS1.7, WS3.1, and WS3.29) demonstrated high extracellular cellulase activity and decomposed 51.34–63.43% of the filter paper mass after 7 days of incubation in a liquid medium. Based on their colony morphology and biochemical properties, these three isolates were predicted to belong to the genus Bacillus. The maximum endoglucanase activity of the crude enzyme produced by Bacillus velezensis WS1.7 was demonstrated. These findings indicate the potential of the B. velezensis WS1.7 isolate for further research and cellulase production.
Keywords: cellulase production, cellulolytic bacteria, endoglucanase activitry, genus Bacillus, household compost
References:
- Wu H, Cui H, Fu C, Li R, Qi F, Liu Z, Yang G, Xiao K, Qiao M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci Total Environ. 2024;909:168627. PubMed, CrossRef
- Miki K, Kamitakahara H, Yoshinaga A, Tobimatsu Y, Takano T. Methylation-triggered fractionation of lignocellulosic biomass to afford cellulose-, hemicellulose-, and lignin-based functional polymers using click chemistry. Green Chem. 2020;22(9):2909-2928. CrossRef
- Cosslett TL, Cosslett PD. Water resources and food security in the Vietnam Mekong Delta. Cham: Springer International Publishing, 2014. Vol. 44; 178 p. CrossRef
- Vu HTD, Tran DD, Schenk A, Nguyen CP, Vu HL, Oberle P, Trinh VC, Nestmann F. Land use change in the Vietnamese Mekong Delta: New evidence from remote sensing. Sci Total Environ. 2022;813:151918. PubMed, CrossRef
- Chu-Ky S, Vu NT, Phi QT, Anh TP, To KA, Quan LH, Nguyen TT, Luong HN, Vu TT, Nguyen TC, Pham TA, Le TH, Quach NT, Nguyen CN. Adding Values to Agro-Industrial Byproducts for the Bioeconomy in Vietnam. In: Valorization of Agro-Industrial Byproducts. CRC Press, 2022. P. 73-88. CrossRef
- Guong VT, Hoa NM. Aquaculture and agricultural production in the Mekong Delta and its effects on nutrient pollution of soil and water. In: Renaud, F., Kuenzer, C. (eds) The Mekong Delta System. Springer Environmental Science and Engineering. Springer, Dordrecht. 2012. P. 363-393. CrossRef
- Le DN, Nguyen HAP, Ngoc DT, Do THT, Ton NT, Van Le T, Ho TH, Van Dang C, Thai PK, Phung D. Air pollution and risk of respiratory and cardiovascular hospitalizations in a large city of the Mekong Delta Region. Environ Sci Pollut Res Int. 2022;29(60):91165-91175. PubMed, CrossRef
- Toop TA, Ward S, Oldfield T, Hull M, Kirby ME, Theodorou MK. AgroCycle – developing a circular economy in agriculture. Energy Procedia. 2017;123:76-80. CrossRef
- Tu Nguyen M, Binh Nguyen T, Khoi Dang K, Luu T, Hung Thach P, Lan Phuong Nguyen K, Quan Nguyen H. Current and Potential Uses of Agricultural By-Products and Waste in Main Food Sectors in Vietnam — A Circular Economy Perspective. In: Ren J, Zhang L. (eds) Circular Economy and Waste Valorisation. Industrial Ecology and Environmental Management, Springer, 2022; vol 2:131-151. CrossRef
- Ungureanu EL, Mocanu AL, Stroe CA, Panciu CM, Berca L, Sionel RM, Mustatea G. Agricultural byproducts used as low-cost adsorbents for removal of potentially toxic elements from wastewater: a comprehensive review. Sustainability. 2023;15(7):5999. CrossRef
- Chakraborty D, Chatterjee S, Althuri A, Palani SG, Venkata Mohan S. Sustainable enzymatic treatment of organic waste in a framework of circular economy. Bioresour Technol. 2023;370:128487. PubMed, CrossRef
- Sulman AM, Matveeva VG, Bronstein LM. Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. Nanomaterials (Basel). 2022;12(21):3796. PubMed, PubMedCentral, CrossRef
- Tuli DK, Kuila A. (Eds.). Current status and future scope of microbial cellulases. Elsevier, 2021. CrossRef
- Maravi P, Kumar A. Cellulase: distribution, production, characterization and industrial applications. Biotechnol J Int. 2021;25(3):36-71. CrossRef
- An X, Chen X, Wang Y, Zhao X, Xiao X, Long H, Li H, Zhang Q. Cellulolytic bacterium characterization and genome functional analysis: An attempt to lay the foundation for waste management. Bioresour Technol. 2021;321:124462. PubMed, CrossRef
- Sharma A, Tewari R, Rana SS, Soni R, Soni SK. Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol. 2016;179(8):1346-1380. PubMed, CrossRef
- Alonso-Pernas P, Bartram S, Arias-Cordero EM, Novoselov AL, Halty-deLeon L, Shao Y, Boland W. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani). Front Microbiol. 2017;8:1970. PubMed, PubMedCentral, CrossRef
- Karthika A, Seenivasagan R, Kasimani R, Babalola OO, Vasanthy M. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manag. 2020;116:58-65. PubMed, CrossRef
- Ma L, Lu Y, Yan H, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnol. 2020;20(1):2. PubMed, PubMedCentral, CrossRef
- Li H, Zhang M, Zhang Y, Xu X, Zhao Y, Jiang X, Zhang R, Gui Z. Characterization of cellulose-degrading bacteria isolated from silkworm excrement and optimization of its cellulase production. Polymers (Basel). 2023;15(20):4142. PubMed, PubMedCentral, CrossRef
- Bui HB. Isolation of cellulolytic bacteria, including actinomycetes, from coffee exocarps in coffee-producing areas in Vietnam. Int J Recycl Org Waste Agric. 2014;3:1-8. CrossRef
- Garrity GM, Bell JA, Lilburn TG. Taxonomic Outline of the Prokaryotes. Bergey’s Manual of Systematic Bacteriology, 2nd Edition. Release 5.0. Springer-Verlag, New York., May 2004: 1-399. CrossRef
- Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82(3):666-677. PubMed, CrossRef
- Egwuatu TF, Appeh OG. Isolation and characterization of filter paper degrading bacteria from the guts of Coptotermes formosanus. J Bioremediat Biodegrad. 2018; 9(3): e1000440. CrossRef
- Coughlan MP, Mayer F. The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H. (eds). The prokaryotes, vol I, 2nd edn. Springer, New York, 1992. pp 459-516.
- Sadhu S, Maiti TK. Cellulase production by bacteria: a review. Br Microbiol Res J. 2013;3(3):235-258. CrossRef
- Algburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA, Mazanko MS, Bren AB, Dicks LMT, Chikindas ML. Safety Properties and Probiotic Potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol. 2016;6(6): 432-452. CrossRef
- Butkhot N, Soodsawaeng P, Vuthiphandchai V, Nimrat S. Characterisationand biosafety evaluation of a novel bacteriocin produced by Bacillus velezensis BUU004. Int Food Res J. 2019;26(5):1617-1625.
- Zhang XZ, Zhang Y. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol. 2011;4(1):98-105. PubMed, PubMedCentral, CrossRef
- Lee CK, Jang MY, Park HR, Choo GC, Cho HS, Park SB, Oh KC, An JB, Kim BG. Cloning and characterization of xylanase in cellulolytic Bacillus sp strain JMY1 isolated from forest soil. Appl Biol Chem. 2016;59(3):415-423. CrossRef
- Maravi P, Kumar A. Isolation, screening and identification of cellulolytic bacteria from soil. Biotechnol J Int. 2020;24(1):1-8. CrossRef
- Yin X, Li T, Jiang X, Tang X, Zhang J, Yuan L, Wei Y. Suppression of Grape White Rot Caused by Coniella vitis Using the Potential Biocontrol Agent Bacillus velezensis GSBZ09. Pathogens. 2022;11(2):248. PubMed, PubMedCentral, CrossRef
- Wang J, Zhou L, Yin C, Gui L, Bao L, Wu F, Zhang Y, ZhangY. Production of extracellular enzymes by a termite‐nest‐related Bacillus siamensis YC‐9 in solid‐state fermentation on agricultural by‐products. Biofuel Bioprod Bior. 2021;15(4):1087-1094. CrossRef
- Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring. Appl Biochem Biotechnol. 2017;182(4):1390-1402. PubMed, CrossRef
- Luo L, Zhao C, Wang E, Raza A, Yin C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol Res. 2022;259:127016. PubMed, CrossRef
- Mahmood R, Afrin N, Jolly SN, Shilpi RY. Isolation and identification of cellulose-degrading bacteria from different types of samples. World J Environ Biosci. 2020;9(2):8-13.
- Bhagat SA, Kokitkar SS. Isolation and identification of bacteria with cellulose-degrading potential from soil and optimization of cellulase production. J Appl Biol Biotechnol. 2021;9(6):154-161. CrossRef
- Sethi S, Datta A, Gupta BL, Gupta S. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. 2013;2013:985685. PubMed, PubMedCentral, CrossRef
- Anu, Kumar S, Kumar A, Kumar V, Singh B. Optimization of cellulase production by Bacillus subtilis subsp. subtilis JJBS300 and biocatalytic potential in saccharification of alkaline-pretreated rice straw. Prep Biochem Biotechnol. 2021;51(7):697-704. PubMed, CrossRef
- Ghazanfar M, Irfan M, Shakir HA, Khan M, Nadeem M, Ahmad I. Cellulase production optimization by Bacillus aerius through response surface methodology in submerged fermentation. Cellulose Chem Technol. 2022;56(3-4): 321-330.
- Bhati N, Shreya, Sharma AK. Cost‐effective cellulase production, improvement strategies, and future challenges. J Food Process Eng. 2021;44(2):e13623. CrossRef
- Kurt AS, Cekmecelioglu D. Bacterial cellulase production using grape pomace hydrolysate by shake-flask submerged fermentation. Biomass Convers Biorefin. 2023;13(8):6981-6988. CrossRef
- Hossain ARJU, Ahammed MA, Sobuj SI, Shifat SK, Somadder P. Cellulase producing bacteria isolation, screening and media optimization from local soil sample. Am J Microbiol Res. 2021; 9(3): 62-74. CrossRef
- Mokale Kognou AL, Chio C, Khatiwada JR, Shrestha S, Chen X, Han S, Li H, Jiang ZH, Xu CC, Qin W. Characterization of cellulose-degrading bacteria isolated from soil and the optimization of their culture conditions for cellulase production. Appl Biochem Biotechnol. 2022;194(11):5060-5082. PubMed, CrossRef
