Ukr.Biochem.J. 2025; Volume 97, Issue 3, May-Jun, pp. 42-47

doi: https://doi.org/10.15407/ubj97.03.042

Relationship between CpG and non-CpG DNA methylation in human lymphocytes assessed with comet assay

M. Chopei, A. Piven, K. Afanasieva, A. Sivolob*

ESC “Institute of Biology and Medicine”,
Taras Shevchenko National University of Kyiv, Ukraine;
*e-mail: sivolob@knu.ua

Received: 21 April 2025; Revised: 26 May 2025;
Accepted: 11 June 2025; Available on-line: 07 July 2025

Tissue-specific DNA methylation plays an important role in the regulation of many functional processes. The methylation level in single cells can be assessed using the comet assay (single-cell gel electrophoresis), a simple and cost-effective technique. The methyl-sensitive comet assay approach has been widely used under the assumption that methylation in the context of CpG dinucleotides is the only type of this modification. However, although CpG is the main methylation target, non-CpG methylation is also widespread. We used the methyl-sensitive comet assay to demonstrate that, in human lymphocytes, non-CpG methylation significantly contributes to the global methylation level. The activation of lymphocyte proliferation results in an increase in non-CpG methylation, and the methyl-sensitive comet assay can be used to assess the ratio between CpG and non-CpG methylation levels.

Keywords: , , , ,


References:

  1. Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777-786. PubMed, CrossRef
  2. Zaichuk T, Marko JF. Single-molecule micromanipulation studies of methylated DNA. Biophys J. 2021;120(11):2148-2155. PubMed, PubMed, CrossRef
  3. Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, Fox-Fisher I, Shabi-Porat S, Hecht M, Pelet T, Moss J, Drawshy Z, Amini H, Moradi P, Nagaraju S, Bauman D, Shveiky D, Porat S, Dior U, Rivkin G, Or O, Hirshoren N, Carmon E, Pikarsky A, Khalaileh A, Zamir G, Grinbaum R, Abu Gazala M, Mizrahi I, Shussman N, Korach A, Wald O, Izhar U, Erez E, Yutkin V, Samet Y, Rotnemer Golinkin D, Spalding KL, Druid H, Arner P, Shapiro AMJ, Grompe M, Aravanis A, Venn O, Jamshidi A, Shemer R, Dor Y, Glaser B, Kaplan T. A DNA methylation atlas of normal human cell types. Nature. 2023;613(7943):355-364. PubMed, PubMed, CrossRef
  4.  Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet. 2011;20(22):4299-4310. PubMed, PubMed, CrossRef
  5. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590-607. PubMed, CrossRef
  6. Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37(11):1012-1027. PubMed, CrossRef
  7. Jang HS, Shin WJ, Lee JE, Do JT. CpG and Non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel). 2017;8(6):148. PubMed, PubMed, CrossRef
  8. Ramasamy D, Deva Magendhra Rao AK, Rajkumar T, Mani S. Non-CpG methylation-a key epigenetic modification in cancer. Brief Funct Genomics. 2021;20(5):304-311. PubMed, CrossRef
  9. Titcombe P, Murray R, Hewitt M, Antoun E, Cooper C, Inskip HM, Holbrook JD, Godfrey KM, Lillycrop K, Hanson M, Barton SJ. Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function. Epigenetics. 2022;17(6):653-664. PubMed, PubMed, CrossRef
  10. 10. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA. 2000;97(10):5237-5242. PubMed, PubMed, CrossRef
  11. Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, Walter J. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. LoS Genet. 2012;8(6):e1002750. PubMed, PubMed, CrossRef
  12. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20(3):320-331. PubMed, PubMed, CrossRef
  13. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905. PubMed, PubMed, CrossRef
  14. Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10(3):189-198. PubMed, CrossRef
  15. Monti N, Cavallaro RA, Stoccoro A, Nicolia V, Scarpa S, Kovacs GG, Fiorenza MT, Lucarelli M, Aronica E, Ferrer I, Coppedè F, Troen AM, Fuso A. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics. 2020;15(8):781-799. PubMed, PubMed, CrossRef
  16. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123(1):291-298. PubMed, CrossRef
  17. Afanasieva K, Sivolob A. Physical principles and new applications of comet assay. Biophys Chem. 2018;238:1-7. PubMed, CrossRef
  18. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-191. PubMed, CrossRef
  19. Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1(1):23-29. PubMed, CrossRef
  20. Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. The comet assay: topical issues. Mutagenesis. 2008;23(3):143-151. PubMed, CrossRef
  21. Shaposhnikov SA, Salenko VB, Brunborg G, Nygren J, Collins AR. Single-cell gel electrophoresis (the comet assay): loops or fragments? Electrophoresis. 2008;29(14):3005-3012. PubMed, CrossRef
  22. Afanasieva K, Zazhytska M, Sivolob A. Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis. 2010;31(3):512-519. PubMed, CrossRef
  23. Wentzel JF, Gouws C, Huysamen C, Dyk Ev, Koekemoer G, Pretorius PJ. Assessing the DNA methylation status of single cells with the comet assay. Anal Biochem. 2010;400(2):190-194. PubMed, CrossRef
  24. Lewies A, Van Dyk E, Wentzel JF, Pretorius PJ. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells. Front Genet. 2014;5:215. PubMed, PubMed, CrossRef
  25. Perotti A, Rossi V, Mutti A, Buschini A. Methy-sens Comet assay and DNMTs transcriptional analysis as a combined approach in epigenotoxicology. Biomarkers. 2015;20(1):64-70. PubMed, CrossRef
  26. Waalwijk C, Flavell RA. MspI, an isoschizomer of hpaII which cleaves both unmethylated and methylated hpaII sites. Nucleic Acids Res. 1978;5(9):3231-3236. PubMed, PubMed, CrossRef
  27. Walder RY, Langtimm CJ, Chatterjee R, Walder JA. Cloning of the MspI modification enzyme. The site of modification and its effects on cleavage by MspI and HpaII. J Biol Chem. 1983;258(2):1235-1241. PubMed, CrossRef
  28. Sneider TW. The 5′-cytosine in CCGG1 is methylated in two eukaryotic DNAs and Msp I is sensitive to methylation at this site. Nucleic Acids Res. 1980;8(17):3829-3840. PubMed, PubMed, CrossRef
  29. Korch C, Hagblom P. In-vivo-modified gonococcal plasmid pJD1. A model system for analysis of restriction enzyme sensitivity to DNA modifications. Eur J Biochem. 1986;161(3):519-524.
    PubMed, CrossRef
  30. Afanasieva K, Chopei M, Zazhytska M, Vikhreva M, Sivolob A. DNA loop domain organization as revealed by single-cell gel electrophoresis. Biochim Biophys Acta. 2013;1833(12):3237-3244. PubMed, CrossRef
  31. Afanasieva K, Chopei M, Lozovik A, Semenova A, Lukash L, Sivolob A. DNA loop domain organization in nucleoids from cells of different types. Biochem Biophys Res Commun. 2017;483(1):142-146. PubMed, CrossRef
  32. Jhuang KF, Hsu ML, Chen YC, Chang JG, Zouali M. DNA methylation trajectories during innate and adaptive immune responses of human B lymphocytes. Immunology. 2023;169(3):344-357. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.